Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

For

Visible Light-Mediated Atom Transfer Radical Addition of Styrene: Base Controlled Selective (Phenylsulfonyl)difluoromethylation

Jie Sheng, ^{‡a,c,}, Kang-Jie Bian, ^{‡c} Yi-Ming Su,^c Guang-Xu Liao,^c RuoMeng Duan,^a

Chen Li, $^{\rm a}$ Zhihong Liu, $^{\rm *b}$ and Xi-Sheng Wang $^{\rm *c}$

^a School of Materials Science and Engineering, Dongguan University of Technology, No.1,

Daxue Road, Songshan Lake, Dongguan 523808, P. R. China.

^b School of Environment and Civil Engineering, Dongguan University of Technology, No.1,

Daxue Road, Songshan Lake, Dongguan 523808, P. R. China.

^c Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chem-

istry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technol-

ogy of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

Tabel of Contents

General Information	S 3
Tables of the Optimization of Reaction Conditions	S4
Solvent Screening	S 4
Base Screening	S 4
Concentration Screening	S 5
Experimental Procedures	S5
General Procedure for Preparation Substrates	S 6
General Procedure of ATRA Reaction of Styrene	S 6
General Procedure of ATRA Reaction of Aliphatic Alkene	S 11
General Procedure of Heck-type Reaction of Styrene	S14
Mechanistic Investigation	S19
General Procedure for Scale-up Reaction and Derivatization of Product	S24
References	S27
¹ H, ¹³ C and ¹⁹ F NMR Spectra	S28

General Information:

NMR spectra were recorded on Bruker-400 (400 MHz for ¹H; 100 MHz for ¹³C and 376 MHz for ¹⁹F {¹H decoupled}) instruments internally referenced to SiMe₄ signal. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). Ru(bpy)₃Cl₂¹ was were prepared according to the literature procedures and recrystallized from hot water. K₂HPO₄ were purchased from Alfa and used as received. NaOAc were purchased from Sinopharm and used as received. DABCO were purchased from Aladdin and used as received. CHCl₃ was distilled from CaH before use. Irradiation of visible light was performed with two 26 w compact fluorescent light bulbs, showed as below.

Tables of the Optimization of Reaction Conditions:

la	+ PhSO ₂ C	$F_{2}I = \frac{K_{2}HPO_{4} (2.0 \text{ G})}{Solvent (0.5 \text{ mL})}$ $F_{2}I = \frac{K_{2}HPO_{4} (2.0 \text{ G})}{Solvent (0.5 \text{ mL})}$	0 (1 mol%) equiv)), 40 °C bulb h	P Za	R + 3a
entry	solvent	yield (2a:3a) (%) ^b	entry	solvent	yield (2a:3a) (%) ^b
1	DMF	trace/-	6	DCM	35/1
2	DMSO	trace/-	7	CHCI ₃	42/0
3	Acetone	12/0	8	Cl ₂ CHCH	Cl ₂ 34/1
4	MeCN	trace/-	9	MeOH	0/-
5	EtOAc	12/0	10	THF	25/0

Table S1. Solvent Screening:^a

 a **1a** (0.3 mmol, 1.5 equiv), PhSO₂CF₂I (0.2 mmol, 1.0 equiv), N₂, 24 h. b Yield determined by ^{19}F NMR yield

Table S2. Base Screening: ^a

		F	Ru(bpy) ₃ Cl ₂ •6H ₂ O(Base (2.0 equiv	1 mol%) /)	R	R
	la +	P1150 ₂ 0F ₂ 1	CHCl ₃ (0.5 mL), 40 °C 26 W light bulb R=SO ₂ Ph 2		2a +	3a
	entry	base	yield(2a:3a) (%)	entry	base	yield(2a:3a) (%)
	1	Na ₂ CO ₃	40/1	8	DABCO	0/92
	2	Cs_2CO_3	0/-	9	none	31/2
	3	NaOAc	52/0	10	K ₃ PO ₄	33/3
	4	AgOAc	trace/-	11	TsNa	45/4
	5	KHCO ₃	35/1	12	CF ₃ COONa	trace/-
	6	NaHCO ₃	43/3	13	NaOH	0/-
_	7	NEt ₃	0/27			

^a **1a** (0.3 mmol, 1.5 equiv), PhSO₂CF₂I (0.2 mmol, 1.0 equiv), N₂, 24 h. ^b Yield determined by ¹⁹F NMR yield

 Table S3. Concentration Screening:^a

la la	+ PhSO ₂ CF ₂	$ \begin{array}{c} \text{Ru(bpy)}_{3}\text{Cl}_{2} \cdot 6\text{H}_{2}\text{O} \\ \text{NaOAc (2.0 ed)} \\ \hline \text{CHCl}_{3} (x \text{ mL}), 40 \\ 26 \text{ W light b} \\ \text{R=SO}_{2}\text{P} \end{array} $	(1 mol%) quiv)) °C ulb h	R 2a	R 3a
entry	CHCl ₃ (mL)	yield (2a:3a) (%) ^b	entry	CHCl ₃ (mL)	yield (2a:3a) (%) ^b
1	0.2	31/1	3	2	46/0
2	1	48/0	4	4	86/1

 $\frac{4 \text{ v}/\text{U}}{^{a} \text{ 1a} (0.3 \text{ mmol}, 1.5 \text{ equiv}), \text{PhSO}_2 \text{CF}_2 \text{I} (0.2 \text{ mmol}, 1.0 \text{ equiv}), \text{N}_2, 24 \text{ h}. \text{ }^{b} \text{ Yield determined by }}{^{19} \text{F NMR yield}}$

Preparation of Substrates:

All the styrene derivatives **1b-s** were prepared according to the literature.² **4a** was purchased from Energy Chemistry and used as received. **4b**, **4e** and **4f** was were prepared according to the literature.³ **4c** was prepared according to the literature.⁴ **4d** was prepared according to the literature.⁵ PhSO₂CF₂I was prepared according to the literature.⁶

General Procedure of ATRA Reaction of Styrene:

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **2a** as a white solid (70.0 mg, 83%). (Note: All of the reactions were very sensitive to the size of the catalyst and powdery c atalyst was needed to obtain reproducible results).

2a: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.74 (t, J = 7.2 Hz, 1H), 7.61-7.57 (m, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.31-7.22 (m, 3H), 5.47 (dd, J = 9.2, 5.6

Hz, 1H), 3.62-3.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 135.7, 131.6, 130.9, 129.4, 128.9, 128.6, 126.9, 122.9 (t, *J* = 287.2 Hz), 40.6 (t, *J* = 18.6 Hz), 17.1 (t, *J* = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.4 (d, *J* = 227.8 Hz), -104.4 (d, *J* = 227.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₃O₂F₂SINa: 444.9547, found: 444.9558.

2b: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.75 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.61-7.57 (m, 2H),

7.37-7.34 (m, 2H), 7.28-7.25 (m, 2H), 5.45-5.42 (m, 1H), 3.59-3.39 (m,2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 135.7, 134.2, 131.5, 130.9, 129.5, 129.1, 128.3, 122.8 (t, 288.7 Hz), 40.7 (t, *J* = 18.8 Hz), 15.7 (t, *J* = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.8 (d, *J* = 228.8 Hz), -104.4 (d, *J* = 228.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₂SIClNa: 478.9157, found: 478.9156.

2c: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.6 Hz, 2H), 7.74 (tt, J = 7.6, 1.2 Hz, 1H), 7.60-7.56 (m, 2H), 7.42-7.39 (m, 2H), 6.99-6.95 (m, 2H), 5.47-5.45 (m, 2H), 5.47-5

1H), 3.59-3.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 247.3 Hz), 138.6 (d, J = 3.4 Hz), 135.7, 131.5, 130.9, 129.5, 128.7 (d, J = 8.4 Hz), 122.9 (t, J = 288.8 Hz), 115.9 (d, J = 21.9 Hz), 40.9 (t, J = 18.7 Hz), 16.0 (t, J = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0 (d, J = 228.6 Hz), -104.4 (d, J = 228.6 Hz), -112.4. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₃SINa: 462.9452, found: 462.9451.

2d: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.7 Hz, 2H), 7.75 (t, *J* = 7.2 Hz, 1H), 7.62-7.56 (m, 2H), 7.43-7.41 (m, 2H), 7.33-7.27 (m, 2H), 5.44-5.40 (m,

1H), 3.58-3.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 135.8, 132.1, 131.5, 131.0, 129.5, 128.6, 122.8 (t, *J* = 288.4 Hz), 122.4, 40.7 (t, *J* = 18.6 Hz), 15.7 (t, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.7 (d, *J* = 228.8 Hz), -104.3 (d, *J* = 228.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₂SBrINa: 522.8652, found: 522.8661.

2e: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.75 (tt, J = 7.2, 1.2 Hz, 1H), 7.61-7.57 (m, 2H), 7.55 (t, J = 2.0 Hz, 1H), 7.38-7.34 (m, 2H), 7.17 (t, J = 8.0 Hz, 1H), 5.40-5.36 (m, 1H), 3.57-3.38 (m, 2H). ¹³C

NMR (101 MHz, CDCl₃) δ 144.8, 135.8, 131.7, 131.5, 131.0, 130.4, 130.0, 129.5, 125.7, 122.8 (t, *J* = 288.8 Hz), 122.6, 40.6 (t, *J* = 18.8 Hz), 15.0 (t, *J* = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0 (d, *J* = 228.7 Hz), -104.3 (d, *J* = 228.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₂SBrINa: 522.8652, found: 522.8653.

2f: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.75 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.61-7.57 (m, 2H), 7.30-7.23 (m, 1H), 7.19 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.12 (dt, *J* = 9.6, 2.0 Hz, 1H), 6.94 (tdd, *J* = 8.4, 2.4, 1.2 Hz, 1H),

5.44-5.40 (m, 1H), 3.58-3.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (d, J = 245.9 Hz), 144.9 (d, J = 7.4 Hz), 135.8, 131.6, 131.0, 130.5 (d, J = 8.3 Hz), 129.5, 122.8 (t, J = 288.7 Hz), 122.6 (d, J = 2.8 Hz), 115.7 (d, J = 21.2 Hz), 114.1 (d, J = 22.5 Hz). 40.5 (t, J = 18.8 Hz), 15.3 (q, J = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.1 (d, J = 228.2 Hz), -104.4 (d, J = 228.6 Hz), -111.8. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₃ISNa: 462.9452, found: 462.9460.

2g: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.52-7.48 (m, 3H), 7.21-7.17 (m, 2H), 7.12-7.08 (m, 1H), 5.85-5.82 (m, 1H), 3.64-3.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6,

135.7, 131.7, 131.7, 131.5, 131.0, 130.2, 129.6, 129.5, 128.8, 127.7, 122.9 (t, J = 288.0 Hz), 39.2 (t, J = 18.8 Hz), 11.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.6 (d, J = 227.5 Hz), -104.0 (d, J = 228.9 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₂IClSNa: 478.9157, found: 478.9135.

2h: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.8 Hz,
2H), 7.74 (tt, J = 7.6, 1.2 Hz, 1H), 7.61-7.57 (m, 2H),
7.43 (td, J = 7.6, 1.6 Hz, 1H), 7.29-7.22 (m, 1H), 7.11 (td,
J = 7.6, 1.0 Hz, 1H), 7.01-6.96 (m, 1H), 5.67 (dd, J =

10.0, 5.3 Hz, 1H), 3.70-3.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2 (d, *J* = 248.5 Hz), 135.7, 131.6, 131.0, 130.3 (d, *J* = 8.6 Hz,), 129.8 (d, *J* = 12.5 Hz), 129.5, 128.8 (d, *J* = 2.5 Hz), 124.7 (d, *J* = 3.6 Hz), 123.0 (t, *J* = 290.2 Hz), 116.3 (d, *J* = 21.7 Hz), 39.5 (td, *J* = 19.0, 2.2 Hz), 7.7 (q, *J* = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.4 (d, *J* = 228.2 Hz), -104.7 (d, *J* = 228.2 Hz), -115.1. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₂O₂F₃SINa: 462.9452, found: 462.9449.

2i: ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.76 (tt, J = 7.6, 1.2 Hz, 1H), 7.62-7.58 (m, 2H), 7.53 (dd, J = 6.8, 2.4 Hz, 1H), 7.35 (ddd, J = 8.8, 4.4, 2.8 Hz, 1H), 6.89 (dd, J = 10.0, 8.8 Hz, 1H), 5.56 (dd, J = 10.0, 8.1 Hz, 1Hz, 1Hz), 5.56 (dd, J = 10.0, 8.1 Hz, 1Hz), 5.56 (dd, J = 10.0, 8.1 Hz), 5.56 (dd, J = 10.0, 8.1 Hz)

J = 10.0, 5.2 Hz, 1H), 3.64-3.36 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (d, J = 249.2 Hz), 135.8, 133.2 (d, J = 8.6 Hz), 131.9 (d, J = 13.8 Hz), 131.6 (d, J = 2.8 Hz), 131.5,131.0, 129.5, 122.8 (t, J = 288.2 Hz), 118.1 (d, J = 23.4 Hz), 116.9 (d, J = 3.5 Hz), 39.4 (td, J = 18.8, 2.2 Hz), 6.0 (q, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.0 (d, J = 229.1 Hz), -104.7 (d, J = 229.0 Hz), -116.8. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₁O₂F₃SBrINa: 540.8558, found: 540.8560.

2j: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.60-7.56 (m, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 5.47 (dd, *J* = 9.6, 5.6 Hz, 1H), 3.62-3.39 (m, 2H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.8, 138.6, 135.6, 131.6, 130.9, 129.6, 129.4 126.8, 123.0 (t, J = 289.0 Hz), 40.6 (t, J = 18.6 Hz), 21.3, 17.5 (t, J = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.39 (d, J = 228.0 Hz), -104.61 (d, J = 228.0 Hz). RMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₅O₂F₂SINa: 458.9703, found: 458.9687.

2k: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.74 (t, J = 7.6 Hz, 1H), 7.60-7.56 (m, 2H), 7.21 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.94 (s, 1H), 6.78 (dd, J = 8.0, 2.0 Hz, 1H), 5.42 (dd, J = 9.6, 5.6 Hz,

1H), 3.80 (s, 3H), 3.61-3.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 144.1, 135.7, 131.6, 130.9, 129.9, 129.4, 122.9 (t, *J* = 288.9 Hz), 119.2, 114.0, 112.7, 55.4, 40.5 (t, *J* = 18.6 Hz), 16.9 (t, *J* = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.6 (1F, *J* = 227.8 Hz), -104.5 (1F, *J* = 227.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₅O₃F₂SINa: 474.9652, found: 474.9654.

2l: ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.92 (d, J = 7.8 Hz,
2H), 7.75 (tt, J = 7.6, 1.2 Hz, 1H), 7.61-7.52 (m, 6H),

5.49-5.45 (m, 1H), 3.62-3.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 135.8, 131.5, 131.0, 130.6 (q, *J* = 32.5 Hz), 129.5, 127.4, 125.9 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 270.6 Hz), 122.8 (t, *J* = 288.6 Hz), 40.6 (t, *J* = 18.9 Hz), 14.9 (t, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7, -100.72 (d, *J* = 229.1 Hz), -104.33 (d, *J* = 229.0 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₂O₂F₅SINa: 512.9421, found: 512.9426.

2m: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.64-7.56 (m, 4H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 5.48 (dd, *J* = 9.2, 6.0 Hz, 1H), 3.62-3.41 (m, 2H). ¹³C NMR (101 MHz,

CDCl₃) δ 143.7, 135.8, 131.5, 131.3 (q, J = 32.4 Hz) 130.9, 130.4, 129.6, 129.5, 125.4 (q, J = 3.7 Hz), 123.7 (q, J = 270.9 Hz), 123.7 (q, J = 3.6 Hz), 122.8 (t, 288.4 Hz), 40.7 (t, J = 18.9 Hz), 14.9 (t, J = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.73, -100.8 (d, J = 229.3 Hz), -104.2 (d, J = 229.2 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₂O₂F₅SINa: 512.9421, found: 512.9418.

2n: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.60-7.56 (m, 3H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 5.78 (dd, *J* = 9.6, 5.2 Hz, 1H), 3.75-3.40 (m,

2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 135.7, 132.8, 131.4, 131.0, 130.4, 129.5, 128.4, 125.9 (q, *J* = 5.8 Hz), 125.5 (q, *J* = 30.6 Hz), 124.0 (q, *J* = 272.5 Hz), 122.9 (t, *J* = 288.6 Hz), 40.4 (t, *J* = 18.7 Hz), 9.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -59.7, -103.7 (d, *J* = 227.4 Hz), 104.6 (dq, *J* = 227.4, 4.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₂O₂F₅SINa: 512.9421, found: 512.9427.

20: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.7 Hz, 2H), 7.76 (tt, J = 7.6, 1.2 Hz, 1H), 7.61-7.56 (m, 4H), 7.53-7.50 (m, 2H), 5.46-5.43 (m, 1H), 3.60-3.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 135.9,

132.7, 131.4, 130.9, 129.5, 127.8, 122.7 (t, J = 288.3 Hz), 118.3, 112.3, 40.4 (t, J = 19.0 Hz), 14.4 (d, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.43 (d, J = 229.5

Hz), -104.19 (d, J = 229.5 Hz). HRMS ESI (m/z): $[M+Na]^+$ calcd. for C₁₆H₁₂NO₂F₂SINa: 469.9499, found: 469.9501.

2p: ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.59-7.55 m, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 5.47 (dd, *J* = 9.6, 5.6 Hz, 1H), 3.89 (s,

3H), 3.62-3.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 147.4, 135.7, 131.5, 130.9, 130.2, 129.5, 127.0, 122.8 (t, *J* = 288.6 Hz), 52.3, 40.4 (t, *J* = 18.8 Hz), 15.4 (t, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.8 (d, *J* = 228.9 Hz), -104.3 (d, *J* = 228.9 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₅O₄F₂SINa: 502.9601, found: 502.9604.

2q: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 2H), 7.89-7.86 (m, 2H), 7.76 (tt, J = 7.6, 1.2 Hz), 7.63-7.58 (m, 4H), 5.50-5.46 (m, 1H), 3.62-3.42 (m, 2H), 3.06 (s, 3H). ¹³C NMR (101

MHz, CDCl₃) δ 148.5, 140.4, 135.9, 131.3, 130.9, 129.5, 128.1, 128.0, 122.7 (t, *J* = 288.2 Hz), 44.5, 40.5 (t, *J* = 18.9 Hz), 14.2 (t, 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.3 (d, *J* = 228.9 Hz), -104.1 (d, *J* = 229.3 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₅O₄F₂S₂INa: 522.9322, found: 522.9319.

2r: ¹H NMR (400 MHz, CDCl₃) δ 8.57 (ddd, J = 4.8, 1.6, 0.8 Hz, 1H), 7.92 (d, J = 7.6 Hz, 2H), 7.73 (td, J = 7.6, 1.2 Hz, 1H), 7.63-7.55 (m, 3H), 7.31 (dt, J = 7.8, 0.8 Hz,

1H), 7.14 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 5.54 (dd, J = 10.0, 4.4 Hz, 1H), 4.00-3.86 (m, 1H), 3.47-3.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 149.7, 136.9, 135.5, 131.8, 130.8, 129.3, 123.0, 123.0 (t, J = 289.7 Hz), 120.9, 38.7 (t, J = 19.0 Hz), 17.5 (t, J = 9.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.23 (d, J = 229.6 Hz), -103.79 (d, J = 229.6 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₄H₁₂NO₂F₂SINa: 445.9499, found: 445.9498.

General Procedure of ATRA Reaction of Aliphatic Alkene:

 $Ru(bpy)_{3}Cl_{2}{\cdot}\,6H_{2}O$ (1.5mg, 0.002 mmol), $K_{2}CO_{3}$ (55.2 mg, 0.4 mmol) and

PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). 1-Octene **4a** (33.6 mg, 0.3 mmol) and CHCl₃ (0.5 mL) were added via syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **5a** as a pale yellow oil (75.6 mg, 88%).

5a: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 2H), 7.77 (td, J = 7.6, 1.2 Hz, 1H), 7.64-7.60 (m, 2H), 4.38-4.31 (m, 1H), 3.23-2.99 (m, 2H), 1.87-1.70 (m, 2H),

1.58-1.47 (m, 1H), 1.46-1.35 (m, 1H), 1.33-1.22 (m, 6H), 0.87 (t, J = 7.2 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 131.8, 130.9, 129.5, 123.5 (t, J = 287.4 Hz), 40.3, 39.8 (t, J = 18.9 Hz,), 31.6, 29.4, 28.2, 22.6, 21.4 (t, J = 7.2 Hz), 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.6 (d, J = 227.4 Hz), -103.2 (d, J = 227.1 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₂₁O₂F₂SINa: 453.0173, found: 453.0171.

5b: ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.76 (tt, *J* = 7.6, 0.8 Hz, 1H), 7.62-7.58 (m, 2H), 7.54 (tt, J = 7.2 Hz, 1.2 Hz, 1H), 7.43-7.39 (m, 2H),

4.47-4.40 (m, 1H), 4.35 (t, J = 6.0 Hz, 2H), 3.29-3.02 (m, 2H), 2.09-1.86 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 135.7, 133.0, 131.7, 130.9, 130.1, 129.6, 129.5, 128.4, 123.3 (t, J = 289.2 Hz), 63.6, 39.9 (t, J = 19.1 Hz), 36.8, 28.9, 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.1 (d, J = 228.4 Hz), -103.1 (d, J = 228.4 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₁₉O₄F₂SINa: 530.9914, found: 530.9909.

5c: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.76 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.63-7.59 (m, 2H), 7.35-7.24 (m, 5H), 4.48 (s,

2H), 4.41-4.34 (m, 1H), 3.49 (t, J = 5.6 Hz, 2H), 3.25-3.00 (m, 2H), 1.97-1.82 (m, 3H), 1.71-1.66 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 135.7, 131.7, 130.9, 129.5, 128.4, 127.7, 127.6, 123.4 (t, J = 287.5 Hz), 73.0, 68.9, 39.8 (t, J = 19.0 Hz), 37.3, 29.8, 20.9 (t, J = 1.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.6 (d, J = 227.4 Hz), -103.2 (d, J = 227.4 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₁O₃F₂SINa: 517.0122, found: 517.0125.

5d: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.79 (t, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.66-7.62 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 4.78 (t, *J*

= 6.0 Hz, 1H), 4.30-4.23 (m, 1H), 3.20-2.91 (m, 4H), 2.42 (s, 3H), 1.78-1.65 (m, 2H), 1.53-1.33 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 136.9, 135.8, 131.7, 130.9, 129.8, 129.5, 127.2, 123.3 (t, *J* = 287.3 Hz), 42.9, 39.8 (t, *J* = 19.0 Hz), 39.5, 28.5, 26.5, 21.6, 20.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3 (d, *J* = 227.8 Hz), -103.0 (d, *J* = 227.8 Hz). HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₂₀H₂₄NO₄F₂S₂INa: 594.0057, found: 594.0050.

5e: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.79 (t, J = 7.6 Hz, 1H), 7.65-7.61 (m, 2H), 4.71-4.64 (m, 1H), 3.99 (dd, J = 14.0, 8.0 Hz, 1H), 3.81 (dd, J = 13.6, 7.6 Hz, 1H), 3.23-3.04 (m, 2H), 2.76 (s,

4H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 135.8, 131.5, 130.9, 129.5, 122.9 (t, *J* = 287.4 Hz), 46.3, 38.0 (t, *J* = 20.2 Hz), 28.2, 12.3 (t, *J* = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.5 (d, *J* = 229.5 Hz), -103.7 (d, *J* = 229.5 Hz). HRMS ESI (*m*/*z*): [M+H]⁺ calcd. for C₁₄H₁₅NO₄IF₂S: 457.9735, found: 457.9741.

5f: ¹H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.9 Hz, 2H), 7.81-7.76 (m, 2H), 7.64 (t, J = 7.2 Hz, 2H), 7.55 (t, J = 8.4 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1H), 5.67 (s, 1H), 4.49

(s, 1H), 4.18 (s, 2H), 3.33-3.05 (m, 2H), 2.27-2.02 (m, 4H). ¹³C NMR (101 MHz, CDCl3) δ 165.5, 162.9, 153.4, 135.8, 132.5, 131.7, 130.9, 129.5, 124.0, 123.3 (t, *J* = 289.87 Hz), 123.1, 116.9, 115.7, 90.7, 68.2, 40.1 (t, *J* = 19.2 Hz), 36.7, 28.7, 19.8 (t, *J*

= 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.72 (d, J = 228.9 Hz), -102.88 (d, J = 228.9 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₁₉O₅F₂SINa: 570.9864, found: 570.9858.

General Procedure of Heck-type Reaction of Styrene:

Ru(bpy)₃Cl₂·6H₂O (1.5mg, 0.002 mmol), DABCO (44.8 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol) and CHCl₃ (0.5 mL) were added via syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **3a** as a white solid (54.0 mg, 92%).

3a⁷: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 2H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.64-7.60 (m, 2H), 7.50-7.47 (m, 2H), 7.40-7.38 (m, 3H), 7.19 (dt, *J* = 16.4

Hz, 2.0 Hz, 1H), 6.39 (dt, J = 16.0 Hz, 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.4 (t, J = 8.8 Hz), 135.4, 133.7, 133.1, 130.9, 130.5, 129.4, 129.0, 128.0, 121.6 (t, J = 281.7 Hz), 112.5 (t, J = 22.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.2.

3b: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 2H), 7.76 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.67 -7.60 (m, 2H), 7.50-7.45 (m, 2H), 7.16 (dt, *J* = 16.4, 2.0 Hz, 1H),

7.11-7.05 (m, 2H), 6.31 (dt, J = 16.2, 11.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (d, J = 250.0 Hz), 141.1 (t, J = 8.9 Hz), 135.4, 133.0, 130.9, 129.9, 129.9, 129.4, 121.6 (t, J = 281.8 Hz), 116.2 (d, J = 22.0 Hz), 112.2 (td, J = 22.5, 2.3Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.1, -109.4. HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₅H₁₂O₂F₃S: 313.0510, found: 313.0509.

3c: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 2H), 7.76 (tt, J = 7.2, 0.8 Hz, 1H), 7.65-7.61 (m, 2H), 7.43-7.41 (m, 2H), 7.37-7.35 (m, 2H), 7.15 (dt, *J* = 16.0,

2.0 Hz, 1H), 6.36 (dt, J = 16.4, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1 (t, *J* = 8.9 Hz), 136.5, 135.4, 133.0, 132.2, 130.9, 129.4, 129.3, 129.2, 121.5 (t, *J* = 281.9 Hz), 113.2 (t, J = 22.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₁O₂F₂SClNa: 351.0034, found: 351.0028.

3d: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 2H), 7.77 (tt, J = 7.6, 1.2 Hz, 1H), 7.66-7.61 (m, 2H), 7.56-7.52 (m, 2H), 7.38-7.34 (m, 2H), 7.14 (dt, J = 16.0,

2.2 Hz, 1H), 6.39 (dt, J = 16.4, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.2 (t, *J* = 8.9 Hz), 135.5, 133.0, 132.6, 132.3, 130.9, 129.4, 129.4, 124.8, 121.5 (t, *J* = 281.9 Hz), 113.3 (t, J = 22.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₁O₂F₂SBrNa: 394.9529, found: 394.9527.

3e: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 2H), 7.78 (tt, J = 7.6 Hz, 1H), 7.65-7.61 (m, 2H), 7.40-7.34 (m, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.20-7.14 (m, 2H, 7.10 (td, J = 8.4, 2.0 Hz, 1H), 6.40 (dt, J = 16.0, 11.6 Hz, 1H). ¹³C NMR (101) MHz, CDCl₃) δ 163.1 (d, J = 245.7 Hz), 141.1 (td, J = 8.9, 2.6 Hz), 135.8 (d, J = 7.7 Hz), 135.5, 132.9, 130.9, 130.6 (d, J = 8.3 Hz), 129.4, 123.9 (d, J = 2.7 Hz), 121.4 (t, *J* = 281.9 Hz), 117.4 (d, *J* = 21.3 Hz), 114.4 (d, *J* = 22.0 Hz), 114.1 (t, *J* = 22.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.5, -112.2. HRMS ESI (*m/z*): [M+H]⁺ calcd. for

ĊI

C₁₅H₁₂O₂F₃S: 313.0510, found: 313.0527.

3f:⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.6 Hz, 2H), 7.78 (tt, J = 7.6, 0.8 Hz, 1H), 7.65-7.61 (m, 2H), 7.48 (s, 1H), 7.39-7.31 (m, 3H), 7.14 (dt, *J* = 16.2, 2.1 Hz,

 $\overline{1H}$, 6.41 (dt, J = 16.2, 11.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9 (t, J = 8.9Hz), 135.5, 135.4, 135.1, 132.9, 130.9, 130.4, 130.3, 129.4, 127.8, 126.1, 121.3 (t, J = 282.0 Hz), 114.2 (t, J = 22.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.5.

3g: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 2H), 7.77 (tt, J = 7.6, 0.8 Hz, 1H), 7.67 -7.60 (m, 3H), 7.52 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.12 (tt, J = 16.0, 2.0 Hz, 1H), 6.40 (dt, J

= 16.0, 11.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8 (t, *J* = 8.9 Hz), 135.7, 135.5, 133.3, 132.9, 130.9, 130.7, 130.5, 129.4, 126.6, 123.1, 119.9 (t, *J* = 281.9 Hz), 114.2 (t, *J* = 22.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.6. HRMS ESI (*m*/*z*): [M+H]⁺ calcd. for C₁₅H₁₂O₂F₂SBr: 372.9709, found: 372.9699.

3h: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.6 Hz, 2H), 7.77 (t, J = 7.6 Hz, 1H), 7.65-7.61 (m, 2H), 7.51 (t, J = 8.4 Hz, 1H), 7.40-7.35 (m, 1H), 7.32 (dt, J = 16.4, 2.2

Hz, 1H), 7.18 (td, J = 7.6, 1.2 Hz, 1H), 7.13-7.08 (m, 1H), 6.52 (dt, J = 16.4, 11.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, J = 252.3 Hz), 135.4, 135.2 (td, J = 9.3, 3.1 Hz), 133.0, 132.0 (d, J = 8.8 Hz), 130.9, 129.4, 129.1, 124.6 (d, J = 3.6 Hz), 121.7 (d, J = 11.5 Hz), 121.4 (d, J = 281.8 Hz), 116.3 (d, J = 21.8 Hz), 115.2 (td, J = 22.3, 7.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.7, -114.8. HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₅H₁₂O₂F₃S: 313.0510, found: 313.0519.

3i: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.6 Hz, 2H), 7.77 (t, J = 7.6 Hz, 1H), 7.65-7.56 (m, 4H), 7.42-7.40 (m, 1H), 7.35-7.28 (m, 2H), 6.41 (dt, J = 16.2, 11.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4 (t, J =

9.1 Hz), 135.5, 134.6, 132.9, 131.93, 131.3, 130.9, 130.2, 129.4, 127.8, 127.3, 121.3 (t, J = 283.8 Hz), 115.3 (t, J = 22.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.7. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₁O₂F₂SClNa: 351.0034, found: 351.0036.

3j: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.9 Hz, 2H), 7.78 (t, *J* = 7.2 Hz, 1H), 7.65-7.61 (m, 3H), 7.49-7.45 (m, 1H), 7.23 (d, *J* = 17.2 Hz), 7.01 (t, *J* =

9.2 Hz, 1H), 6.52 (dt, J = 16.3, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1 (d, J = 252.9 Hz), 135.5, 134.6 (d, J = 8.7 Hz), 133.8 (td, J = 9.4, 2.9 Hz,), 132.8, 131.6 (d, J = 2.7 Hz), 131.0, 129.4, 123.6 (d, J = 13.0 Hz), 121.1 (t, J = 282.4 Hz), 118.1 (d,

J = 23.5 Hz), 117.2 (d, J = 3.4 Hz), 116.8 (td, J = 22.5, 6.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.0, -116.9. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₀O₂F₃SBrNa: 412.9435, found: 412.9430.

3k⁷: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.64-7.60 (m, 2H), 7.38 (d, *J* = 8.0 Hz), 7.20 (d, *J* = 8.0 Hz), 7.15 (d, *J* = 16.0 Hz, 1H), 6.32 (dt, *J* = 16.4, 11.6 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.3 (t, J = 8.8 Hz), 140.9, 135.3, 133.2, 131.0, 130.9 129.7, 129.4, 128.0, 121.8 (t, J = 281.6 Hz), 111.2 (t, J = 22.3 Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0.

31: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.13 (d, *J* = 16.4 Hz, 1H),

 $\overline{6.91}$ (d, J = 8.4 Hz, 1H), $\overline{6.22}$ (dt, J = 16.4, 12.0 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 141.9 (t, J = 8.9 Hz), 135.3, 133.2, 130.9, 129.6, 129.3, 126.5, 122.0 (t, J = 281.5 Hz), 114.4, 109.6, 22.2, 55.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -100.7. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₄O₃F₂SNa: 347.0529, found: 347.0522.

3m: ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.67 (t, J = 7.2 Hz, 1H), 7.55-7.51 (m, 2H), 7.23-6.84 (m, 5H), 6.30 (dt, J = 15.6, 12.0 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 142.3 (t, J

= 8.8 Hz), 135.4, 135.0, 133.0, 130.9, 130.0, 129.4, 121.6 (t, J = 281.8 Hz), 120.6, 116.4, 112.8, 112.7 (t, J = 22.2 Hz), 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₄O₃F₂NaS: 347.0529, found: 347.0528.

3n: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 2H), 7.75 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.8 Hz, 2H), 7.49-7.41 (m, 2H), 7.39-7.31 (m, 1H), 6.97 (t, J = 7.4 Hz,

1H), 6.92 (d, J = 8.3 Hz, 1H), 6.52 (dt, J = 16.3, 12.2 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 137.9 (t, J = 9.4 Hz), 135.2, 133.3, 131.7, 130.9, 129.3,

129.2, 122.6, 122.0 (t, J = 281.6 Hz), 120.8, 112.9 (t, J = 22.0 Hz), 111.2, 55.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.1. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₄O₃F₂SNa: 347.0529, found: 347.0514.

30: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.8 Hz, 2H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.67-7.59 (m, 6H), 7.24 (d, *J* = 15.6 Hz, 2H), 6.49 (dt, *J* = 16.2, 11.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 140.8 (t, J = 8.9 Hz), 137.0, 135.6, 132.8, 132.1 (q, J = 32.8 Hz), 130.9, 129.5, 128.2, 126.0 (q, J = 3.8 Hz),123.8 (q, J = 270.6Hz) 121.2 (t, J = 282.6Hz), 115.4 (t, J = 22.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8, -101.6. HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₆H₁₂O₂F₅S: 363.0478, found: 363.0488.

3p: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 2H), 7.78 (t, J = 7.5 Hz, 1H), 7.73 (s, 1H), 7.69-7.62 (m, 4H), 7.54 (t, J = 8.0 Hz, 1H), 7.24 (dt, J = 16.4, 2.0 Hz, 1H), 7.22 (s, 0H), 6.48 (dt, J = 16.2, 11.7 Hz, 1H). ¹³C

NMR (101 MHz, CDCl₃) δ 140.8 (t, J = 8.9 Hz), 135.5, 134.4, 132.8, 131.6 (q, J = 32.7 Hz), 131.0, 129.6, 129.51, 126.9 (q, J = 3.7 Hz), 124.7 (q, J = 3.7 Hz), 123.8 (q, J = 270N Hz), 121.3 (t, J = 282.1 Hz), 114.8 (t, J = 22.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9, -101.5 (d, J = 1.7 Hz), -101.5 (d, J = 1.7 Hz). HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₆H₁₂O₂F₅S: 363.0478, found: 363.0487.

3q: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.77 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.64-7.54 (m, 4H), 7.49 (t, *J* = 7.6 Hz, 1H), 6.40 (dt,

J = 16.0, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2 (td, J = 9.0, 2.1 Hz), 135.6, 132.7, 132.5, 132.4, 130.9, 129.9, 129.4, 128.7 (q, J = 30.4 Hz), 128.2, 126.2 (q, J = 5.5 Hz), 123.9 (q, J = 272.4 Hz), 120.9 (t, J = 282.3 Hz), 117.2 (t, J = 22.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.0, -102.2. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₁O₂F₅SNa: 385.0298, found: 385.0291.

3r: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.7 Hz, 2H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.72-7.57 (m, 6H), 7.22

(dt, J = 16.4, 2.0 Hz, 1H), 6.51 (dt, J = 16.2, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.3 (t, J = 8.9 Hz), 137.8, 135.6, 132.8, 132.6, 130.9, 129.5, 128.4, 121.0 (t, J = 282.4 Hz), 118.3, 116.5 (t, J = 22.6 Hz), 113.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.7. HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₆H₁₂NO₂F₂S: 320.0557, found: 320.0550.

Mechanistic Investigation:

Competition Studies:

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol), **1k** (40.2 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **2a** (20.2 mg, 24%) and **2k** (25.3 mg, 28%).

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol), **1o** (38.7 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **2a** (30.4 mg, 36%) and **2o** (25.9 mg, 29%).

Carbocation Trapping Experiment:

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol), LiBr (43.4, 0.5 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and PhCF₃ (29.2 mg, 0.2 mmol) was added. None of **2a'** was detected by ¹H NMR and ¹⁹F NMR of the crude material. **2a** was obtained with a low yield (10%, ¹⁹F yield).

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol), KBr (59.5, 0.5 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and PhCF₃ (29.2 mg, 0.2 mmol) was added. None of **2a'** was detected by ¹H NMR and ¹⁹F NMR of the crude material. **2a** was obtained with a moderate yield (42%, ¹⁹F yield).

Propagation Experiments:

In Stephenson's investigation,⁸ ethyl bromoacetate which was inert to ATRA reaction with the optimized reaction conditions can undergo ATRA reaction when another atom transfer agent (ethyl bromomalonate or ethyl bromofluoroacetate) known to undergo ATRA reaction efficiently was added. It meaned that a propagation mechanism was operative. Here in we applied the same strategy to investigate the propagation mechanism. In our standard conditions PhSO₂CF₂I was a good substrate for the ATRA reaction while ethyl bromodifluoroacetate can not achieve the transformation at all. We mixed them in the same reaction to test if ethyl bromodifluoroacetate can be initiated to undergo ATRA reaction.

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol) and NaOAc (33 mg, 0.4 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol), EtOOCCF₂Br (40.6 mg, 0.2 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. None of the product **1a'** was detected by ¹⁹F NMR.

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (31.2 mg, 0.3 mmol), EtOOCCF₂Br (81.2 mg, 0.4 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. None of the product **1a'** was detected by ¹⁹F NMR and **2a** was obtained with good yield (83%, isolated yield). *This result revealed that a propagation mechanism may not be operative*.

General Procedure for Transformation of 2a to 3a:

Ru(bpy)₃Cl₂· $6H_2O$ (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and **2a** (84.4 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial

approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **3a** as a white solid (54.7 mg, 93%).

General Procedure for Transformation of 2s to 3s:

Ru(bpy)₃Cl₂· $6H_2O$ (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). 2-Methoxystyrene **1s** (40.2 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of

the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **2s** (54.2 mg, 60%) and **3s** (14.9 mg, 23%).

Ru(bpy)₃Cl₂·6H₂O (1.5 mg, 0.002 mmol), NaOAc (33 mg, 0.4 mmol) and PhSO₂CF₂I (63.6 mg, 0.2 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). 2-Methoxystyrene **1s** (40.2 mg, 0.3 mmol) and CHCl₃ (4.0 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 48 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **2s** (40.7 mg, 45%) and **3s** (27.8 mg, 43%). *This revealed that the heck-type product can be obtained from the ATRA product in the reaction*.

2s: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.73 (dt, J = 7.6, 1.2 Hz, 1H), 7.60-7.56 (m, 2H), 7.36 (dd, J = 7.6, 1.2 Hz, 1H), 7.27-7.23 (m, 1H), 6.90 (td, J = 7.6, 0.8 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 5.81

(dd, J = 9.6, 5.2 Hz, 1H), 3.90 (s, 3H), 3.78-3.36 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 135.6, 131.8, 130.9, 130.4, 129.9, 129.4, 128.0, 123.3 (t, J = 288.3 Hz), 120.8, 115.4, 55.7, 38.8 (t, J = 18.6 Hz), 11.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.9 (d, J = 227.1 Hz, 1F), -104.6 (d, J = 227.1 Hz, 1F). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₅O₃F₂SINa: 474.9652, found: 474.9659.

General Procedure for Derivatization of Product:

Gram-scale reaction:

Ru(bpy)₃Cl₂·6H₂O (22.5 mg, 0.030 mmol), NaOAc (495 mg, 6 mmol) and PhSO₂CF₂I (954 mg, 3 mmol) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Styrene **1a** (468 mg, 4.5 mmol) and CHCl₃ (60 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 40 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away) for 24 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **2a** as a white solid (1.47 g, 78%).

Reaction of 2a with NaN3:

2a (21 mg, 0.05 mmol), NaN₃ (10 mg, 0.15 mmol) and AlCl₃ (3.5 mg, 0.025 mmol) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). MeCN (0.5 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 70 °C for 16 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **6** as a colorless oil (12.5 mg, 74%).

6: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.77 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.64-7.60 (m, 2H), 7.44-7.34 (m, 5H), 4.97-4.94 (m, 1H), 2.94-2.73 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 135.7, 131.8, 131.0, 129.5, 129.3, 129.1, 126.8, 123.0 (t, J = 286.6 Hz), 59.6 (t, J = 2.4 Hz), 35.9 (t, J = 19.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.4 (d, J = 229.7 Hz), -103.3 (d, J = 229.7 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₃N₃O₂F₂SNa: 360.0594, found: 360.0590.

Reductive De-iodination of 2a:

2a (21 mg, 0.05 mmol) and AIBN (24.6 mg, 0.15 mmol) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times). Toluene (0.5 mL) and ^tBu₃SnH (43.6 mg, 0.15 mmol) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 90 °C for 3 h. The mixture was then cooled to room temperature, concentrated under vacuum and purified by preparatory thin layer chromatography (PE:EA = 30:1) to give product **7** as a colorless oil (quant yield was obtained).

7: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.6 Hz, 2H), 7.76 (t, J = 7.6 Hz, 1H), 7.64-7.60 (m, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.24-7.20 (m, 3H), 2.97-2.93 (m, 2H),

2.72-2.58 (m, 2H). 139.2, 135.4, 132.5, 130.9, 129.4, 128.8, 128.4, 126.8, 124.2 (t, J = 284.5 Hz), 31.3 (t, J = 20.0 Hz), 27.2 (t, J = 3.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.7. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₄O₂F₂SNa: 319.0580, found: 319.0568.

Reductive Desulfonylation:

Into a 10 mL flask containing compound **3l** (32.4 mg, 0.1 mmol) in DMF (1 mL) at room temperature was added HOAc/NaOAc (1:1) buffer solution (8 mol/L, 1 mL).

Magnesium turnings (36 mg, 1.5 mmol) were added in portions. The reaction was stirred at 50 °C until the material was consumed as determined by TLC and quenched with water. The mixture was extracted with Et_2O , and the combined organic layer was washed with water and brine, dried over Na_2SO_4 , filtrated and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (PE:EA = 10:1) to give product **8** as a white solid (16.6 mg, 90%).

8: ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.8 Hz, 2H), 6.91-6.87 (m, 2H), 6.84-6.78 (m, 1H), 6.22 (td, J =56.0, 6.0 Hz, 1H), 6.17-6.07 (m, 1H), 3.83 (s, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 160.73, 136.8 (t, J = 12.2 Hz), 128.8, 127.2, 118.8 (t, J = 23.8 Hz), 115.9 (t, J = 231.7 Hz), 114.3, 55.4. ¹⁹F NMR (376 MHz, CDCl₃). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₀H₁₀OF₂Na: 207.0597, found: 207.0597.

References:

- S. A. McFarland, F. S. Lee, K. A. W. Y. Cheng, F. L. Cozens and N. P. Schepp, J. Am. Chem. Soc. 2005, 127, 7065.
- [2] M. D. Greenhalgh, S. P. Thomas, J. Am. Chem. Soc. 2012, 134, 11900.
- [3] J. Xu, Y. Fu, D.-F. Luo, Y.-Y. Jiang, B. Xiao, Z.-J. Liu, T.-J. Gong and L. Liu, J. Am. Chem. Soc. 2011, 133, 15300.
- [4] S. K. Ginotra, G. A. Friest and D. B. Berkowitz, Org. Lett. 2012, 14, 968.
- [5] T. Cochet, V. Bellosta, D. Roche, J.-Y. Ortholand, A. Greinerb and J. Cossy, *Chem. Commun.* 2012, 48, 10745.
- [6] G. K. S. Prakash, J. Hu, Y. Wang and G. A. Olah, Org. Lett. 2004, 6, 4315.
- [7] N. Surapanich, C. Kuhakarn, M. Pohmakotr and V. Reutrakul, *Eur. J. Org. Chem.* 2012, 5943.
- [8] C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, J. Am. Chem. Soc. 2012, 134, 8875.

Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

-10 -20 - 30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

00.00---

190 180 **1**40 130

S35

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

с

~0.09 ~0.01

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10

00.0----

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

~158.86 ~158.86 133.81 7135.59 7133.81 7133.81 7133.81 7133.81 7133.81 7133.81 7133.81 7147.24 716.77 716.62 716.55 716.55 716.55

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(

00:0----

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200