Supporting Information

The synthesis of fluorescent benzofuro[2,3-c]pyridines via palladium-catalyzed heteroaromatic C–H addition and sequential tandem cyclization

Wenzhang Xiong,^a Zhongyan Chen,^a Yinlin Shao,^a Renhao Li,^b Kun Hu^a and Jiuxi Chen*^a

^{a.} College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
 ^{b.} School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
 E-mail: jiuxichen@wzu.edu.cn

Table of Contents

1.	General InformationS	1
2.	Experimental Section	
	2.1 General procedure for the synthesis of 1aa–1ap S	\$2
	2.2 General procedure for the synthesis of 1a-1q	33
	2.3 Optimization of reaction conditions	54
	2.4 General procedure for the synthesis of 3	55
	2.5 General procedure for the synthesis of 4	55
	2.6 General procedure for the synthesis of 5	56
	2.7 General procedure for the synthesis of 6	56
3.	Analytical data for reactants	57
4.	Spectroscopic study of 3a S	13
5.	NMR spectra for reactantsS	16
6.	Analytical data for all productsS	33
7.	NMR spectra for productsS	67
8.	X-ray crystallographic data for product 3r , 4i , 5h , 6p	42

1. General Information

Chemicals were received from commercial sources without further purification or prepared by literature methods. Melting points are uncorrected and recorded on Digital Melting Point Apparatus WRS-1B. ¹H NMR and ¹³C NMR spectra were measured on a 400 or 500 MHz Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz. High-resolution mass spectrometry (HRMS) was performed with a TOF MS instrument with an EI or ESI source. X-ray crystallographic analysis was done at the X-ray crystallography facility, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences (CAS).

2. Experimental Section

2.1 General procedure for the synthesis of 1aa–1ap¹

Substituted salicylaldehyde (10 mmol) and acetone or substituted acetophenone (10 mmol) were dissolved in 15 mL MeOH and cooled to 0 °C. Then, 40% aqueous NaOH (4 mL) was added dropwise to the reaction mixture. After completion of addition, the reaction mixture was allowed to come to room temperature and stirred for overnight. The solvent was evaporated, and 1M aqueous HCl (20 mL) was added to it.The aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were dried (Na₂SO₄), Evaporation of the solvent gave an solid which was further purified by flash chromatograph on silica gel eluting with the corresponding eluent to give **1aa–1ap** in 82% to 98% yields.

¹ P. Saha, A. Biswas, N. Molleti and V. K. Singh, Enantioselective synthesis of highly substituted chromans via the oxa-Michael-Michael cascade reaction with a bifunctional organocatalyst, *J. Org. Chem.*, 2015, **80**, 11115–11122.

2.2 General procedure for the synthesis of 1a-1q²

Substituted chalcone (10 mmol) and bromoacetonitrile (1.5 equiv) and K_2CO_3 (2.0 equiv) were dissolved in 15 mL DMF. The resulting reaction mixture was allowed to come to 50 °C and stirred for 12h. After the reaction mixture was cooled to room temperature, washed with saturated aq. 1M HCl, and extracted with ethylacetate (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and vaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (4:1) to afford desired product **1a-1q** in 85% to 97% yields.

 $^{^2}$ K. Shibuya, B. Staels and J. C. Fruchart, Design and synthesis of highly potent and selective human peroxisome proliferator-activated receptor α agonists, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 4689-4693.

2.3 Optimization of reaction conditions

	O Ph O CN	s <u>catalys</u> ox 2a	it, additive	Ph N 3a	-S
Entry	Pd catalyst	Temperature (^o C)	Oxidant	Solvent	Yield (%) ^b
1	Pd(OAc) ₂	80	Ag ₂ CO ₃	DMA	46
2	Pd(OAc) ₂	80	Ag_2CO_3	DMF	39
3	Pd(OAc) ₂	80	Ag_2CO_3	THF	25
4	Pd(OAc) ₂	80	Ag_2CO_3	toluene	10
5	Pd(OAc) ₂	80	AgCF ₃ CO ₂	NMA	72 ^c
6	Pd(OAc) ₂	80	AgCF ₃ CO ₂	NMA	63 ^d
7	Pd(OAc) ₂	60	$AgCF_3CO_2$	NMA	56
8	Pd(OAc) ₂	100	AgCF ₃ CO ₂	NMA	84

Table S1 Optimization of the reaction conditions^a

^aConditions: **1a** (0.4 mmol), **2a** (0.2 mmol), Pd catalyst (10 mol %), bpy (20 mol %), CH₃CO₂H (0.8 mmol), oxidant (0.4 mmol), solvent (1 mL), 80 °C, 48 h, N₂. blsolated yield. ^cCH₃CO₂H (0.4 mmol). ^dCH₃CO₂H (1.6 mmol).

2.4 General procedure for the synthesis of 3

2-(Cyanomethoxy)chalcones (0.4 mmol, 2 equiv), thiophene (1 equiv), $Pd(OAc)_2$ (10 mmol%), bpy (20 mol%), AgTFA (2 equiv), N-methylacetamide (NMA) (1 mL) and CH₃COOH (0.8 mmol) were successively added to a Schlenk reaction tube. The reaction mixture was stirred vigorously at 80 °C for 48 hours. After the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethylacetate (3 × 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (20:1) to afford desired product.

2.5 General procedure for the synthesis of 4

2-(Cyanomethoxy)chalcones (0.4 mmol, 2 equiv), 2-methylfuran (1 equiv), Pd(OAc)₂ (10 mmol%), bpy (20 mol%), AgTFA (2 equiv), N-methylacetamide (NMA) (1 mL) and CH₃COOH (0.8 mmol) were successively added to a Schlenk reaction tube. The reaction mixture was stirred vigorously at 120 °C for 48 hours. After the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethylacetate (3 × 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (20:1) to afford desired product.

2.6 General procedure for the synthesis of 5

2-(Cyanomethoxy)chalcones (0.4 mmol, 2 equiv), N-methylpyrrole (1 equiv), Pd(OAc)₂ (10 mmol%), bpy (20 mol%), AgTFA (2 equiv), N-methylacetamide (NMA) (1 mL) and CH₃COOH (0.8 mmol) were successively added to a Schlenk reaction tube. The reaction mixture was stirred vigorously at 90 °C for 48 hours. After the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethylacetate (3×8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (20:1) to afford desired product.

2.7 General procedure for the synthesis of 6

2-(Cyanomethoxy)chalcones (0.2 mmol, 1 equiv), 1,2-dimethylindole (2 equiv), Pd(OAc)₂ (10 mmol%), bpy (20 mol%), N-methylacetamide (NMA) (1 mL) and CH₃COOH (0.8 mmol) were successively added to a Schlenk reaction tube. The reaction mixture was stirred vigorously at 80 \degree for 48 hours. After the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethylacetate (3 × 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (6:1) to afford desired product.

3. Analytical data for reactant

(*E*)-2-(2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)acetonitrile (**1***a*): White solid (2.4985 g, 95%), mp 110-101 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.02 (m, 3H), 7.73-7.71 (m, 1H), 7.61-7.58 (m, 2H), 7.53-7.50 (m, 2H), 7.46-7.43 (m, 1H), 7.17-7.14 (m, 1H), 7.04 (d, J = 8.3 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.6, 155.3, 138.6, 138.2, 132.8, 131.7, 129.2, 128.6, 128.55, 125.1, 124.0, 123.4, 114.7, 112.7, 53.9. HRMS calcd for C₁₇H₁₄NO₂ [M + H]⁺: 264.1019, found 264.1020.

(*E*)-2-(4-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)acetonitrile (**1b**): White solid (2.5761 g, 93%), mp 90-91 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.02 (m, 3H), 7.60-7.56 (m, 2H), 7.53-7.50 (m, 3H), 7.23 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 4.84 (s, 2H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.6, 153.5, 138.7, 138.2, 132.9, 132.8, 132.3, 129.6, 128.6, 128.5, 124.9, 123.7, 114.8, 112.9, 54.1, 20.5. HRMS calcd for C₁₈H₁₆NO₂ [M + H]⁺: 278.1176, found 278.1190.

(*E*)-2-(4-methoxy-2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)acetonitrile (1c): Yellow solid (2.6370 g, 90%), mp 116-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.99 (m, 3H), 7.61-7.49 (m, 4H), 7.22 (d, J = 2.9 Hz, 1H), 7.02-6.95 (m, 2H), 4.80 (s, 2H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.5, 155.5, 149.7, 138.4, 138.1, 132.8, 128.6, 128.5, 126.3, 124.2, 116.8, 115.2, 119.4, 113.8, 55.8, 55.1. HRMS calcd for C₁₈H₁₆NO₃ [M + H]⁺: 294.1125, found 294.1120.

(*E*)-2-(4-fluoro-2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)acetonitrile (1*d*): White solid (2.6976 g, 96%), mp 115-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.98 (m, 3H), 7.63-7.50 (m, 4H), 7.44-7.41 (m, 1H), 7.16-7.11 (m, 1H), 7.04-7.00 (m, 1H), 4.85 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 158.4 (d, J_{C-F} = 241.3 Hz), 151.5, 137.9, 137.1, 133.0, 128.7, 128.6, 127.0 (d, J_{C-F} = 7.5 Hz), 124.8, 118.0 (d, J_{C-F} = 22.5 Hz), 115.0 (d, J_{C-F} = 23.8 Hz), 114.8 (d, J_{C-F} = 8.8 Hz), 114.6, 54.8. HRMS calcd for C₁₇H₁₃FNO₂ [M + H]⁺: 282.0925, found 282.0917.

(*E*)-2-(4-chloro-2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)acetonitrile (1e): White solid (2.8809 g, 97%), mp 114-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.96 (m, 3H), 7.65 (d, J = 8.4 Hz, 1H), 7.62-7.55 (m, 2H), 7.53-7.49 (m, 2H), 7.16-7.13 (m, 1H), 7.02 (d, J = 1.8 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.2, 155.5, 137.9, 137.3, 137.1, 132.9, 130.0, 128.6, 128.5, 124.0, 123.7, 123.6, 114.2, 113.3, 53.9. HRMS calcd for C₁₇H₁₃ClNO₂ [M + H]⁺: 298.0629 and 300.0600, found 298.0643 and 300.0605.

(*E*)-2-(4-bromo-2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)acetonitrile (**If**): White solid (3.2736 g, 96%), mp 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.97 (d, J = 15.6 Hz, 1H), 7.82 (d, 2.4 Hz, 1H), 7.62-7.49 (m, 5H), 6.92 (d, J = 8.8 Hz, 1H), 4.86 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.0, 154.2, 137.8, 136.7, 134.0, 133.0, 131.4, 128.7, 128.5, 127.1, 124.2, 116.0, 114.4, 114.35, 54.0. HRMS calcd for C₁₇H₁₃BrNO₂ [M + H]⁺: 342.0124 and 344.0104 found 342.0130 and 344.0110.

(E)-2-(2-(3-oxo-3-(p-tolyl)prop-1-en-1-yl)phenoxy)acetonitrile (**1**g): White solid

(2.5207 g, 91%), mp 104-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 15.9 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.73-7.71 (m, 1H), 7.59 (d, J = 15.9 Hz, 1H), 7.45-7.41 (m, 1H), 7.31 (d, J = 7.9 Hz, 2H), 7.17-7.13 (m, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.88 (s, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 152.3, 143.7, 138.1, 135.6, 131.6, 129.3, 129.2, 128.7, 125.2, 124.0, 123.3, 114.7, 112.7, 53.9, 21.6. HRMS calcd for C₁₈H₁₆NO₂ [M + H]⁺: 278.1176, found 278.1175.

(*E*)-2-(2-(3-oxo-3-(*m*-tolyl))prop-1-en-1-yl)phenoxy)acetonitrile (**1***h*): White solid (2.4653 g, 89%), mp 106-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 15.9 Hz, 1H), 7.84-7.81 (m, 2H), 7.74-7.71 (m, 1H), 7.58 (d, J = 15.9 Hz, 1H), 7.46-7.37 (m, 3H), 7.17-7.14 (m, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.88 (s, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.8, 155.3, 138.5, 138.4, 138.2, 133.6, 131.6, 129.2, 129.1, 128.5, 125.7, 125.2, 124.1, 123.3, 114.7, 112.6, 55.9, 21.4. HRMS calcd for C₁₈H₁₆NO₂ [M + H]⁺: 278.1176, found 278.1178.

(*E*)-2-(2-(3-oxo-3-(o-tolyl)prop-1-en-1-yl)phenoxy)acetonitrile (**Ii**): White solid (2.3545 g, 85%), mp 73-74 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 16.2 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.53-7.51 (m, 1H), 7.45-7.37 (m, 2H), 7.30-7.29 (m, 2H), 7.19 (d, J = 16.4 Hz, 1H), 7.15-7.12 (m, 1H), 7.01 (d, J = 8.3 Hz, 1H), 4.83 (s, 2H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.3, 155.1, 139.3, 138.9, 137.1, 131.8, 131.3, 130.5, 129.0, 128.2, 128.16, 125.5, 124.8, 123.3, 114.6, 112.5, 53.7, 20.3. HRMS calcd for C₁₈H₁₆NO₂ [M + H]⁺: 278.1176, found 278.1175.

(*E*)-2-(2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)phenoxy)acetonitrile (**Ij**): Yellow solid (2.6956 g, 92%), mp 106-107 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.02 (m,

3H), 7.72-7.70 (m, 1H), 7.60 (d, J = 15.8 Hz, 1H), 7.44-7.41 (m, 1H), 7.16-7.13 (m, 1H), 7.03 (d, J = 8.3 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 4.88 (s, 2H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 188.8, 163.5, 155.3, 137.7, 131.5, 131.1, 130.9, 129.2, 125.3, 123.9, 123.3, 114.8, 113.9, 112.7, 55.5, 53.9. HRMS calcd for C₁₈H₁₆NO₃ [M + H]⁺: 294.1125, found 294.1128.

(*E*)-2-(2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)phenoxy)acetonitrile (**Ik**): White solid (2.5852 g, 92%), mp 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.04 (m, 3H), 7.72-7.70 (m, 1H), 7.56 (d, J = 15.8 Hz, 1H), 7.46-7.42 (m, 1H), 7.20-7.13 (m, 3H), 7.03 (d, J = 8.3 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 188.9, 165.6 (d, J_{C-F} = 253.8 Hz), 155.3, 138.8, 134.5, 131.8, 131.1 (d, J_{C-F} = 8.8 Hz), 129.3, 125.0, 123.5, 123.3, 115.7 (d, J_{C-F} = 21.3 Hz), 114.7, 112.6, 53.8. HRMS calcd for C₁₇H₁₃FNO₂ [M + H]⁺: 282.0925, found 282.0936.

(*E*)-2-(2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)phenoxy)acetonitrile (11): White solid (2.7621 g, 93%), mp 122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 15.9 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 15.9 Hz, 1H), 7.49-7.43 (m, 3H), 7.17-7.14 (m, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.88 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 189.3, 155.4, 139.3, 139.1, 136.5, 131.9, 129.9, 129.5, 129.4, 128.9, 124.9, 123.4, 114.7, 112.6, 53.8. HRMS calcd for C₁₇H₁₃ClNO₂ [M + H]⁺: 298.0629 and 300.0600, found 298.0636 and 300.0598.

(*E*)-2-(2-(3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)phenoxy)acetonitrile (**1m**): White solid (3.1713 g, 93%), mp 133-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 15.9 Hz, 1H), 7.91-7.87 (m, 2H), 7.72-7.70 (m, 1H), 7.67-7.32 (m, 2H), 7.54 (d, J =

15.9 Hz, 1H), 7.48-7.43 (m, 1H), 7.18-7.14 (m, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 189.5, 155.4, 139.2, 136.9, 132.0, 130.1, 129.4, 127.9, 124.9, 123.4, 114.7, 112.6, 53.8. HRMS calcd for C₁₇H₁₃BrNO₂ [M + H]⁺: 342.0124 and 344.0104, found 342.0121 and 344.0106.

(*E*)-2-(2-(3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)phenoxy)acetonitrile (*In*): White solid (3.2107 g, 97%), mp 122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.07 (m, 3H), 7.78 (d, J = 8.2 Hz, 2H), 7.74-7.71 (m, 1H), 7.56 (d, J = 15.9 Hz, 1H)), 7.49-7.45 (m, 1H), 7.19-7.15 (m, 1H), 7.04 (d, J = 8.3 Hz, 1H), 4.90 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 189.8, 155.5, 141.0, 139.9, 134.1 (d, J_{C-F} = 32.5 Hz), 132.2, 129.5, 128.8, 125.7 (d, J_{C-F} = 3.8 Hz), 124.7, 123.44, 123.7 (d, J_{C-F} = 273.8 Hz), 123.4, 114.6, 112.6, 53.8. HRMS calcd for C₁₈H₁₃F₃NO₂ [M + H]⁺: 332.0893, found 332.0890.

(*E*)-2-(2-(3-(*naphthalen*-2-*yl*)-3-oxoprop-1-en-1-*yl*)phenoxy)acetonitrile (**1o**): White solid (2.8483 g, 91%), mp 118-119 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 1H), 8.14-8.10 (m, 2H), 8.01 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.79-7.75 (m, 2H), 7.63-7.56 (m, 2H), 7.46-7.43 (m, 1H), 7.19-7.16 (m, 1H), 7.03 (d, J = 8.3 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.3, 155.4, 138.5, 135.5, 135.47, 132.6, 131.7, 130.0, 129.6, 129.4, 128.6, 128.4, 127.8, 126.8, 125.2, 124.5, 124.0, 123.3, 114.7, 112.6, 53.9. HRMS calcd for C₂₁H₁₆NO₂ [M + H]⁺: 314.1176, found 314.1189.

(*E*)-2-(2-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)phenoxy)acetonitrile (**1p**): White solid (2.2011 g, 87%), mp 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 16.0 Hz,

1H), 7.72-7.70 (m, 1H), 7.65 (s, 1H), 7.50 (d, J = 15.9 Hz, 1H), 7.45-7.40 (m, 1H), 7.33 (d, J = 3.6 Hz, 1H), 7.15-7.12 (m, 1H), 7.02 (d, J = 8.3 Hz, 1H), 6.60-6.59 (m, 1H), 4.89 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 178.0, 155.4, 153.7, 146.6, 137.7, 131.8, 129.3, 124.9, 123.3, 123.0, 117.6, 114.7, 112.6, 112.5, 53.8. HRMS calcd for C₁₅H₁₂NO₃ [M + H]⁺: 254.0812, found 254.0810.

(*E*)-2-(2-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)phenoxy)acetonitrile (**1***q*): White solid (2.3941 g, 89%), mp 136-137 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 15.8 Hz, 1H), 7.88-7.87 (m, 1H), 7.72-7.69 (m, 2H), 7.50 (d, J = 15.8 Hz, 1H), 7.46-7.43 (m, 1H), 7.20-7.15 (m, 2H), 7.04 (d, J = 8.3 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 182.2, 155.4, 145.5, 138.0, 133.9, 131.9, 131.8, 129.5, 128.3, 125.0, 123.6, 123.4, 114.7, 112.6, 53.9. HRMS calcd for C₁₅H₁₂NO₂S [M + H]⁺: 270.0583, found 270.0578.

4. Spectroscopic study of 3a

The stock solution of different metal ions was prepared from metal nitrate salts of Hg^{2+} , Ag^+ , Cu^+ , Cu^{2+} , Pb^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} , Cd^{2+} , Mn^{2+} , Fe^{2+} , Fe^{3+} , Al^{3+} in acetonitrile. All spectroscopic study of **3a** was carried out in test solution of **3a** (10 μ M) in 3 mL CH₃CN. The UV-vis and fluorescent titration of **3a** with Hg^{2+} was carried out by adding Hg^{2+} into the test solution of **3a**, and the total concentration of Hg^{2+} ranged from 0 to 15 μ M. The UV-vis and fluorescence spectra were recorded 10s after each addition at ambient temperature. The fluorescence spectra were recorded by excitation wavelength of 340 nm with 5 nm slit widths for both excitation and emission. The sensing behavior was investigated by calculating the emission ratio F457/F398 based on the recorded spectra.

Figure S1 Emission ratio F457/F398 of 3a (10 μ M) recorded upon titration with Hg²⁺

from 0 to 15 μ M in CH₃CN.

Figure S2 Emission ratio F457/F398 of **3a** (10 μ M) in CH₃CN in the presence of different analytes (10 μ M).

Sample	λ_{abs}	$\lambda_{\rm em}$	Sample	λ_{abs}	$\lambda_{\rm em}$	Sample	λ_{abs}	$\lambda_{\rm em}$
	(nm)	(nm)	_	(nm)	(nm)		(nm)	(nm)
3 a	351	398	4 a	354	402	5k	359	417
3b	346	391	4 b	352	404	51	355	418
3c	354	408	4 c	349	400	5m	355	419
3d	364	427	4d	343	417	5n	354	415
3e	363	434	4 e	361	396	50	353	405
3f	362	423	4 f	351	428	6a	350	442
3g	365	432	4g	349	403	6b	353	447
3h	341	395	4h	357	399	6c	352	450
3 i	348	429	4i	349	398	6d	348	461
3ј	380	447	4j	352	404	6e	356	442
3k	356	402	4k	359	437	6f	353	446
31	353	405	41	355	410	6g	353	448
3m	345	397	4m	339	384	6h	360	467
3n	359	398	4n	349	405	6i	352	444
30	353	397	40	355	415	6j	356	449
3p	353	415	4 p	357	408	6k	362	443
3q	353	402	5a	352	418	61	356	442
3r	349	399	5b	357	413	6m	355	444
3s	361	405	5c	355	418	6n	355	447
3t	361	418	5d	347	426	60	361	465
3u	360	413	5e	359	441	6р	360	462
3v	352	401	5f	359	430	6q	359	462
3w	356	405	5g	355	425			
3x	357	409	5h	353	418			
3 y	356	409	5i	357	416			
3z	358	417	5j	361	425			

Table S2. Absorptions (λ_{abs}) and emissions (λ_{em}) data in CH₃CN.

Table S3. Fluorescence quantum yield (Φ_F) in CH₃CN at 10 μ M determined with an integrating sphere

sy	st	er	n.
~			

Sample	3 a	3b	3n	30	4e	4i	5a	5h	6a	6e
Φ_{F}	0.43	0.42	0.26	0.55	0.61	0.78	0.93	0.95	0.90	0.94

Probe	Selectivity	Measurement	Enhancement	Reference
Coumarin based	Hg^{2+}	Turn-on	~ 50 fold	18a
Rhodamine based	Hg^{2+}	Turn-on	26 fold	18b
Coumarin based	${\rm Hg^{2+},Cu^{2+}}$	Turn-on	9 fold	18c
Julolidine based	Hg^{2+}, Mn^{2+}	Turn-off	~ 10 fold	17
Schiff base	Hg^{2+}	Ratiometric	3 fold	18d
Tetraphenylethene based	Hg^{2+}	Ratiometric	~ 2 fold	18e
Benzofuro[2,3-c]pyridine based	Hg^{2+}	Ratiometric	34 fold	this work

Table **S4** A comparison of 3a with some other fluorescent chemosensors for Hg^{2+} .

5. NMR Spectra for reactant

Figure S3. ¹H NMR of 1a (500 MHz, CDCl₃) and ¹³C NMR of 1a (125 MHz, CDCl₃)

Figure S4. 1 H NMR of 1b (500 MHz, CDCl₃) and 13 C NMR of 1b (125 MHz, CDCl₃)

Figure S5. ¹H NMR of 1c (400 MHz, CDCl₃) and ¹³C NMR of 1c (125 MHz, CDCl₃)

Figure S6. ¹H NMR of 1d (400 MHz, CDCl₃) and ¹³C NMR of 1d (125 MHz, CDCl₃)

Figure S7. ¹H NMR of 1e (400 MHz, CDCl₃) and ¹³C NMR of 1e (125 MHz, CDCl₃)

Figure S8. ¹H NMR of 1f (400 MHz, CDCl₃) and ¹³C NMR of 1f (125 MHz, CDCl₃)

Figure S9. ¹H NMR of 1g (400 MHz, CDCl₃) and ¹³C NMR of 1g (125 MHz, CDCl₃)

Figure S10. ¹H NMR of 1h (400 MHz, CDCl₃) and ¹³C NMR of 1h (125 MHz, CDCl₃)

Figure S11. ¹H NMR of 1i (400 MHz, CDCl₃) and ¹³C NMR of 1i (125 MHz, CDCl₃)

Figure S12. ¹H NMR of 1j (500 MHz, CDCl₃) and ¹³C NMR of 1j (125 MHz, CDCl₃)

Figure S13. 1 H NMR of 1k (400 MHz, CDCl₃) and 13 C NMR of 1k (125 MHz, CDCl₃)

Figure S14. ¹H NMR of 11 (400 MHz, CDCl₃) and ¹³C NMR of 11 (125 MHz, CDCl₃)

Figure S15. ¹H NMR of 1m (400 MHz, CDCl₃) and ¹³C NMR of 1m (125 MHz, CDCl₃)

Figure S16. 1 H NMR of 1n (400 MHz, CDCl₃) and 13 C NMR of 1n (125 MHz, CDCl₃)

Figure S17. ¹H NMR of 10 (500 MHz, CDCl₃) and ¹³C NMR of 10 (125 MHz, CDCl₃)

Figure S18. ¹H NMR of 1p (400 MHz, CDCl₃) and ¹³C NMR of 1p (125 MHz, CDCl₃)

Figure S19. 1 H NMR of 1q (500 MHz, CDCl₃) and 13 C NMR of 1q (125 MHz, CDCl₃)

6. Analytical data for all products

1-(5-Methylthiophen-2-yl)-3-phenylbenzofuro[2,3-*c*]*pyridine* (**3***a*): Pale-yellow solid (58.0 mg, 85%), mp 153-154 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 7.6 Hz, 2H), 8.11-8.09 (m, 2H), 8.03-8.01 (m, 1H), 7.70-7.67 (m, 1H), 7.62-7.59 (m, 1H), 7.54-7.51 (m, 2H), 7.44-7.40 (m, 2H), 6.93 (s, 1H), 2.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 150.4, 147.6, 143.2, 139.3, 139.1, 137.5, 132.6, 129.7, 128.7, 128.65, 128.4, 127.0, 126.7, 123.4, 122.7, 121.9, 112.5, 109.4, 15.6. HRMS calcd for $C_{22}H_{16}NOS [M + H]^+$: 342.0947, found 342.0950. Elemental analysis calcd (%) for $C_{22}H_{15}NOS$: C, 77.39; H, 4.43; N, 4.10. Found: C, 77.11; H, 4.45; N, 4.08.

3-*Phenyl-1-(thiophen-2-yl)benzofuro*[2,3-*c*]*pyridine* (**3***b*): White solid (42.5 mg, 65%), mp 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.36 (m, 1H), 8.23-8.20 (m, 2H), 8.18 (s, 1H), 8.07 (d, J = 7.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.66-7.62 (m, 1H), 7.55-7.52 (m, 3H), 7.47-7.43 (m, 2H), 7.29-7.27 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 150.7, 147.8, 141.6, 139.3, 137.3, 132.9, 129.9, 128.7, 128.5, 128.3, 128.2, 128.1, 127.0, 123.6, 122.7, 122.0, 112.6, 110.0. HRMS calcd for C₂₁H₁₄NOS [M + H]⁺: 328.0791, found 328.0783. Elemental analysis calcd (%) for C₂₁H₁₃NOS: C, 77.04; H, 4.00; N, 4.28. Found: C, 77.21; H, 3.98; N, 4.27.

1-(5-Butylthiophen-2-yl)-3-phenylbenzofuro[2,3-c]pyridine (3c): Pale-yellow solid (61.3 mg, 80%), mp 134-135 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 7.7 Hz, 2H), 8.14 (d, J = 3.6 Hz, 1H), 8.10 (s, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.62-7.59 (m, 1H), 7.54-7.51 (m, 2H), 7.44-7.40 (m, 2H), 6.94 (d, J = 3.5 Hz, 1H), 2.93 (t, J = 7.6 Hz, 2H), 1.82-1.76 (m, 2H), 1.51-1.44 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 150.5, 149.4, 147.7, 139.3, 138.7, 137.6, 132.7, 129.7, 128.7, 128.5, 128.4, 127.0, 125.5, 123.4, 122.7, 121.9, 112.5, 109.4, 33.8, 30.2, 22.2, 13.8. HRMS calcd for C₂₅H₂₂NOS [M + H]⁺: 384.1417, found 384.1417. Elemental analysis calcd (%) for C₂₅H₂₁NOS: C, 78.30; H, 5.52; N, 3.65. Found: C, 78.51; H, 5.51; N, 3.63.

1-(5-Methoxythiophen-2-yl)-3-phenylbenzofuro[2,3-*c*]*pyridine* (**3***d*): White solid (58.6 mg, 82%), mp 190-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.6 Hz, 2H), 8.08 (s, 1H), 8.05 (d, J = 7.7 Hz, 1H), 8.01 (d, J = 4.1 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.64-7.60 (m, 1H), 7.54-7.50 (m, 2H), 7.45-7.40 (m, 2H), 6.37 (d, J = 4.1 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.6, 157.1, 150.5, 147.8, 139.4, 137.9, 132.4, 129.6, 128.7, 128.4, 127.4, 127.0, 123.5, 122.8, 121.9, 112.6, 108.8, 105.6, 60.2. HRMS calcd for C₂₂H₁₆NO₂S [M + H]⁺: 358.0896, found 358.0900. Elemental analysis calcd (%) for C₂₂H₁₅NO₂S: C, 73.93; H, 4.23; N, 3.92. Found: C, 74.21; H, 4.21; N, 3.98.

1-(5-*Chlorothiophen-2-yl*)-3-*phenylbenzofuro*[2,3-*c*]*pyridine* (**3***e*): White solid (43.3 mg, 60%), mp 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.13 (m, 3H), 8.05-8.03 (m, 2H), 7.68 (d, J = 8.2 Hz, 1H), 7.64-7.60 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.42 (m, 2H), 7.05 (d, J = 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 150.6, 147.6, 140.5, 139.0, 136.4, 133.4, 133.0, 130.0, 128.7, 128.6, 127.6, 127.5, 126.9, 123.7, 122.5, 122.0, 122.6, 110.1. HRMS calcd for C₂₁H₁₃ClNOS [M + H]⁺: 362.0401 and 364.0371, found 362.0405 and 364.0378. Elemental analysis calcd (%) for C₂₁H₁₂ClNOS: C, 69.71; H, 3.34; N, 3.87. Found: C, 69.52; H, 3.36; N, 3.86.

1-(5-Bromothiophen-2-yl)-3-phenylbenzofuro[2,3-*c*]*pyridine* (**3***f*): yellow solid (43.7 mg, 54%), mp 180-181 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.6 Hz, 3H), 8.05 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 3.9 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.65-7.61 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.42 (m, 2H), 7.20 (d, J = 3.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 150.7, 147.5, 143.4, 139.0, 136.4, 133.1, 131.2, 130.0, 128.8, 128.6, 128.4, 127.0, 123.7, 122.5, 122.0, 116.2, 112.6, 110.2. HRMS calcd for C₂₁H₁₃BrNOS [M + H]⁺: 405.9896 and 307.9875, found 405.9906 and 307.9879. Elemental analysis calcd (%) for C₂₁H₁₂BrNOS: C, 62.88; H, 2.98; N, 3.45. Found: C, 63.12; H, 2.96; N, 3.44.

3-Phenyl-1-(5-phenylthiophen-2-yl)benzofuro[2,3-c]pyridine (**3g**): yellow solid (56.4 mg, 70%), mp 180-181 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 3.8 Hz, 1H), 8.22 (d, J = 7.9 Hz, 2H), 8.15 (s, 1H), 8.06 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 7.9 Hz, 2H), 7.72 (d, J = 8.3 Hz, 1H), 7.65-7.62 (m, 1H), 7.56-7.53 (m, 2H), 7.48-7.42 (m, 5H), 7.35-7.32 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 150.7, 147.9, 146.7, 140.9, 139.3, 137.2, 134.5, 132.8, 129.8, 129.3, 128.9, 128.7, 128.5, 127.8, 127.0, 126.0, 124.3, 123.6, 122.7, 122.0, 112.6, 109.9. HRMS calcd for C₂₇H₁₈NOS [M + H]⁺: 404.1104, found 404.1117. Elemental analysis calcd (%) for C₂₇H₁₇NOS: C, 80.37; H, 4.25; N, 3.47. Found: C, 80.09; H, 4.27; N, 3.49.

1-(3-Methylthiophen-2-yl)-3-phenylbenzofuro[2,3-*c*]*pyridine* (**3***h*): yellow solid (33.4 mg, 49%), mp 140-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.19 (m, 3H), 8.07 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.55-7.51 (m, 2H), 7.49 (d, J = 5.0, 1H), 7.45-7.41 (m, 2H), 7.08 (d, J = 5.0 Hz, 1H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 150.9, 148.9, 139.7, 138.5, 138.4, 132.8, 132.4, 131.4, 129.8, 128.7, 128.4, 127.1, 126.7, 123.1, 122.9, 121.9, 112.6, 110.1, 16.6. HRMS calcd for C₂₂H₁₆NOS [M + H]⁺: 342.0947, found 342.0950. Elemental analysis calcd (%) for C₂₂H₁₅NOS: C, 77.39; H, 4.43; N, 4.10. Found: C, 77.57; H, 4.42; N, 4.09.

1-(*3-Methoxythiophen-2-yl*)-*3-phenylbenzofuro*[2,*3-c*]*pyridine* (*3i*): Yellow oil (45.7 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 9.9 Hz, 3H), 8.05 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.61-7.58 (m, 1H), 7.54-7.51 (m, 2H), 7.47 (d, J = 5.5 Hz, 1H), 7.44-7.39 (m, 2H), 7.05 (d, J = 5.5 Hz, 1H), 4.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 156.3, 150.6, 148.7, 139.5, 136.8, 132.8, 129.7, 128.6, 128.3, 127.2, 127.0, 123.2, 122.8, 121.8, 117.8, 117.6, 112.5, 109.8, 59.2. HRMS calcd for $C_{22}H_{16}NO_2S [M + H]^+$: 358.0896, found 358.0903. Elemental analysis calcd (%) for $C_{22}H_{15}NO_2S$: C, 73.93; H, 4.23; N, 3.92. Found: C, 73.72; H, 4.21; N, 3.91.

1-([2,2'-Bithiophen]-5-yl)-3-phenylbenzofuro[2,3-c]pyridine (**3***j*): Yellow solid (44.2 mg, 52%), mp 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.16 (m, 3H), 8.10 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.56-7.52 (m, 2H), 7.46-7.40 (m, 2H), 7.35 (d, J = 3.5 Hz, 1H), 7.31-7.28 (m, 2H), 7.09-7.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 150.6, 147.8, 140.3, 139.8, 139.2, 137.7, 137.0, 132.8, 129.8, 129.0, 128.7, 128.5, 128.0, 127.0, 124.8, 124.2, 123.5, 122.6, 121.9, 112.6, 109.9. HRMS calcd for $C_{25}H_{16}NOS_2$ [M + H]⁺: 410.0668, found 410.0661. Elemental analysis calcd (%) for $C_{25}H_{15}NOS_2$: C, 73.32; H, 3.69; N, 3.42. Found: C, 73.53; H, 3.68; N, 3.40.

1-(5-Methylthiophen-2-yl)-3-(p-tolyl)benzofuro[2,3-*c*]*pyridine* (**3***k*): White solid (42.6 mg, 60%), mp 183-184 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.10 (m, 4H), 8.04 (d, J = 10.6 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.62-7.58 (m, 1H), 7.43-7.40 (m, 1H), 7.32 (d, J = 7.7 Hz, 1H), 6.92 (d, J = 2.6 Hz, 2H), 2.61 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 150.6, 147.5, 143.1, 139.2, 138.3, 137.4, 136.6, 132.6, 129.6, 129.4, 128.6, 126.9, 126.7, 123.4, 122.8, 121.9, 112.5, 109.1, 21.2, 15.6. HRMS calcd for C₂₃H₁₈NOS [M + H]⁺: 356.1104, found 356.1106. Elemental analysis calcd (%) for C₂₃H₁₇NOS: C, 77.72; H, 4.82; N, 3.94. Found: C, 77.49; H, 4.84; N, 3.93.

1-(5-Methylthiophen-2-yl)-3-(m-tolyl)benzofuro[2,3-*c*]*pyridine* (**3***l*): White solid (35.5 mg, 50%), mp 152-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.09 (m, 2H), 8.04-7.98 (m, 3H), 7.68 (d, J = 8.3 Hz, 1H), 7.62-7.58 (m, 1H), 7.43-7.39 (m, 2H), 7.25-7.24 (m, 1H), 6.92 (d, J = 2.8 Hz, 1H), 2.61 (s, 3H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 150.6, 147.6, 143.0, 139.3, 139.2, 138.2, 137.5, 132.6, 129.6, 129.2, 128.6, 127.7, 126.6, 124.2, 123.4, 122.7, 121.9, 112.5, 109.4, 21.7, 15.6. HRMS calcd for C₂₃H₁₈NOS [M + H]⁺: 356.1104, found 356.1099.Elemental analysis calcd (%) for C₂₃H₁₇NOS: C, 77.72; H, 4.82; N, 3.94. Found: C, 77.98; H, 4.81; N, 3.93.

1-(5-Methylthiophen-2-yl)-3-(o-tolyl)benzofuro[2,3-*c*]*pyridine* (**3***m*): yellow oil (27.0 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 3.6 Hz, 1H), 8.01 (d, J = 7.7 Hz, 1H), 7.81 (s, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.63-7.58 (m, 2H), 7.43-7.40 (m, 1H), 7.35-7.33 (m, 3H), 6.93-6.92 (m, 1H), 2.59 (s, 3H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 153.3, 147.1, 143.0, 140.3, 139.1, 137.1, 136.6, 132.2, 130.9, 130.0, 129.6, 128.5, 128.0, 126.6, 125.8, 123.4, 122.7, 121.9, 113.2, 112.5, 20.9, 15.6. HRMS calcd for C₂₃H₁₈NOS [M + H]⁺: 356.1104, found 356.1109. Elemental analysis calcd (%) for C₂₃H₁₇NOS: C, 77.72; H, 4.82; N, 3.94. Found: C, 78.01; H, 4.80; N, 3.92.

3-(4-Methoxyphenyl)-1-(5-methylthiophen-2-yl)benzofuro[2,3-c]pyridine (**3n**): White solid (60.8 mg, 82%), mp 182-183 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.6 Hz, 2H), 8.09 (d, J = 3.5 Hz, 1H), 8.03 (d, J = 7.3 Hz, 2H), 7.68 (d, J = 8.2 Hz, 1H), 7.62-7.58 (m, 1H), 7.43-7.39 (m, 1H), 7.04 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 2.6 Hz, 1H), 3.89 (s, 3H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.1, 157.1, 150.3, 147.3, 143.0, 139.4, 137.4, 132.7, 132.2, 129.6, 128.5, 128.2, 126.7, 123.4, 122.8, 121.9, 114.1, 112.5, 108.5, 53.4, 15.6. HRMS calcd for C₂₃H₁₈NO₂S [M + H]⁺: 372.1053, found 372.1053. Elemental analysis calcd (%) for C₂₃H₁₇NO₂S: C, 74.37; H, 4.61; N, 3.77. Found: C, 74.60; H, 4.59; N, 3.76.

3-(4-Fluorophenyl)-1-(5-methylthiophen-2-yl)benzofuro[2,3-c]pyridine (**3o**): White solid (43.1 mg, 60%), mp 197-198 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.14 (m, 2H), 8.09 (d, J = 3.5 Hz, 1H), 8.03 (d, J = 9.8 Hz, 2H), 7.69 (d, J = 8.3 Hz, 1H), 7.63-7.60 (m, 1H), 7.44-7.41 (m, 1H), 7.20-7.17 (m, 2H), 6.92-6.91 (m, 1H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.3 (d, J_{C-F} = 246.3 Hz), 157.1, 149.5, 147.5, 143.2, 139.0, 137.6, 135.5, 132.7, 129.8, 128.8, 128.7 (d, J_{C-F} = 7.5 Hz), 126.7, 123.5, 122.6, 121.9, 115.5 (d, J_{C-F} = 21.3 Hz), 112.6, 109.0, 15.6. HRMS calcd for C₂₂H₁₅FNOS [M + H]⁺: 360.0853, found 360.0857. Elemental analysis calcd (%) for C₂₂H₁₄FNOS: C, 73.52; H, 3.93; N, 3.90. Found: C, 73.27; H, 3.95; N, 3.91.

3-(4-Chlorophenyl)-1-(5-methylthiophen-2-yl)benzofuro[2,3-c]pyridine (**3***p*): White solid (41.3 mg, 55%), mp 205-206 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.07 (m, 3H), 8.02 (s, 1H), 7.99 (d, J = 7.7 Hz, 2H), 7.67 (d, J = 8.3 Hz, 1H), 7.61-7.58 (m, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.42-7.39 (m, 1H), 6.90-6.89 (m, 1H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 149.1, 147.7, 143.3, 138.9, 137.8, 137.7, 134.5, 132.7, 129.8, 128.8, 128.2, 126.7, 123.5, 122.6, 121.9, 112.6, 109.1, 15.6. HRMS calcd for C₂₂H₁₅ClNOS [M + H]⁺: 376.0557 and 378.0528, found 376.0549 and 378.0520. Elemental analysis calcd (%) for C₂₂H₁₄ClNOS: C, 70.30; H, 3.75; N, 3.73. Found: C, 70.51; H, 3.73; N, 3.72.

3-(4-Bromophenyl)-1-(5-methylthiophen-2-yl)benzofuro[2,3-c]pyridine (**3***q*): White solid (40.2mg, 48%), mp 212-213 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 3.6 Hz, 1H), 8.06-8.01 (m, 4H), 7.70 (d, J = 8.3 Hz, 1H), 7.64-7.60 (m, 3H), 7.45-7.41 (m, 1H), 6.92-6.91 (m, 1H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 149.2, 147.7, 143.3, 138.9, 138.3, 137.7, 132.7, 131.8, 129.8, 128.8, 128.5, 126.7, 123.6, 122.8, 122.6, 121.9, 112.6, 109.1, 15.6. HRMS calcd for C₂₂H₁₅BrNOS [M + H]⁺: 420.0052 and 422.0032, found 420.0045 and 422.0028. Elemental analysis calcd (%) for C₂₂H₁₄BrNOS: C, 62.87; H, 3.36; N, 3.33. Found: C, 62.59; H, 3.38; N, 3.34.

1-(5-*Methylthiophen*-2-*yl*)-3-(4-(*trifluoromethyl*)*phenyl*)*benzofuro*[2,3-*c*]*pyridine* (**3***r*): White solid (47.4mg, 58%), mp 189-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.1 Hz, 2H), 8.03 (d, J = 3.6 Hz, 1H), 8.01 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.71 (d, J = 8.2 Hz, 2H), 7.65-7.57 (m, 2H), 7.41-7.38 (m, 1H), 6.89-6.88 (m, 1H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 148.6, 147.9, 143.4, 142.6, 138.8, 137.8, 132.6, 130.2 (d, J_{C-F} = 31.3 Hz), 129.8, 128.9, 127.1, 126.8, 125.5 (q, J_{C-F} = 3.8 Hz), 124.4 (d, J_{C-F} = 270.0 Hz), 123.6, 122.5, 121.8, 112.6, 109.7, 15.6. HRMS calcd for C₂₃H₁₅F₃NOS [M + H]⁺: 410.0821, found 410.0826. Elemental analysis calcd (%) for C₂₃H₁₄F₃NOS: C, 67.47; H, 3.45; N, 3.42. Found: C, 67.66; H, 3.44; N, 3.41.

1-(5-Methylthiophen-2-yl)-3-(naphthalen-2-yl)benzofuro[2,3-*c*]*pyridine* (**3***s*): White solid (57.1mg, 73%), mp 220-221 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.36 (d, J = 8.5 Hz, 1H), 8.23 (s, 1H), 8.13 (d, J = 3.6 Hz, 1H), 8.06 (d, J = 7.6 Hz, 1H), 8.01-7.96 (m, 2H), 7.90-7.88 (m, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.53-7.51 (m, 2H), 7.45-7.41 (m, 1H), 6.93 (d, J = 3.6 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 150.3, 147.7, 143.2, 139.1, 137.6, 136.7, 133.6, 133.5, 132.7, 129.7, 128.73, 128.7, 128.3, 127.7, 126.7, 126.2, 126.1, 126.0, 125.0, 123.5, 122.7, 121.9, 112.6, 109.7, 15.7. HRMS calcd for C₂₆H₁₈NOS [M + H]⁺: 392.1104, found 392.1107. Elemental analysis calcd (%) for C₂₆H₁₇NOS: C, 79.77; H, 4.38; N, 3.58. Found: C, 78.00; H, 4.46; N, 3.57.

1-(5-Methylthiophen-2-yl)-3-(thiophen-2-yl)benzofuro[2,3-*c*]*pyridine* (**3***t*): yellow solid (29.8 mg, 43%), mp 150-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 3.6 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.99 (s, 1H), 7.69-7.67 (m, 2H), 7.63-7.59 (m, 1H), 7.44-7.38 (m, 2H), 7.15-7.13 (m, 1H), 6.92-6.91 (m, 1H), 2.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 147.3, 146.1, 145.3, 143.5, 138.6, 137.5, 132.6, 129.8, 128.8, 127.9, 126.9, 126.7, 123.7, 123.5, 122.5, 122.0, 112.6, 107.8, 15.6. HRMS calcd for $C_{20}H_{14}NOS_2$ [M + H]⁺: 348.0511, found 348.0516. Elemental analysis calcd (%) for $C_{20}H_{13}NOS_2$: C, 69.14; H, 3.77; N, 4.03. Found: C, 68.92; H, 3.89; N, 4.04.

3-(*Furan-2-yl*)-1-(5-methylthiophen-2-yl)benzofuro[2,3-c]pyridine (**3u**): yellow solid (39.7 mg, 43%), mp 145-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 8.03 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.55 (s, 1H), 7.44-7.40 (m, 1H), 7.16 (d, J = 3.2 Hz, 1H), 6.92-6.91 (m, 1H), 6.58-6.56 (m, 1H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.2, 147.2, 143.3, 143.1, 142.6, 138.6, 137.8, 132.3, 129.7, 128.8, 126.7, 123.5, 122.7, 122.0, 112.5, 112.1, 108.0, 107.7, 15.6. HRMS calcd for C₂₀H₁₄NO₂S [M + H]⁺: 332.0740, found 332.0736. Elemental analysis calcd (%) for C₂₀H₁₃NO₂S: C, 72.49; H, 3.95; N, 4.23. Found: C, 72.67; H,3.94; N, 4.21.

6-*Methyl-1-(5-methylthiophen-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**3***ν*): White solid (60.4 mg, 85%), mp 140-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.2 Hz, 2H), 8.08 (d, J = 3.6 Hz, 1H), 8.05 (s, 1H), 7.81 (s, 1H), 7.55-7.50 (m, 3H), 7.44-7.37 (m, 2H), 6.91 (d, J = 3.2 Hz, 1H), 2.61 (s, 3H), 2.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 150.2, 147.9, 143.0, 139.4, 139.2, 137.4, 133.1, 132.6, 130.8, 128.6, 128.55, 128.3, 126.9, 126.6, 122.6, 121.7, 112.0, 109.3, 21.3, 15.6. HRMS calcd for C₂₃H₁₈NOS [M + H]⁺: 356.1104, found 356.1095. Elemental analysis calcd (%) for C₂₃H₁₇NOS: C, 77.72; H, 4.82; N, 3.94. Found: C, 77.91; H, 4.81; N, 4.92.

6-*Methoxy*-1-(5-*methylthiophen*-2-*yl*)-3-*phenylbenzofuro*[2,3-*c*]*pyridine* (**3***w*): White solid (49.0 mg, 66%), mp 151-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 7.5 Hz, 2H), 8.07 (d, J = 3.5 Hz, 1H), 8.05 (s, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.53-7.50 (m, 2H), 7.43-7.40 (m, 2H), 7.19-7.17 (m, 1H), 6.91 (d, J = 2.7 Hz, 1H), 3.91 (s, 3H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 151.9, 150.1, 148.3, 143.1, 139.3, 139.1, 137.6, 132.8, 128.7, 128.6, 128.4, 127.0, 126.7, 123.1, 118.3, 113.1, 109.3, 104.2, 56.0, 15.6. HRMS calcd for C₂₃H₁₈NO₂S [M + H]⁺: 372.1053, found 372.1050. Elemental analysis calcd (%) for C₂₃H₁₇NO₂S: C, 74.37; H, 4.61; N, 3.77. Found: C, 74.56; H, 4.60; N, 3.75.

6-*Fluoro-1-(5-methylthiophen-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**3***x*): White solid (44.5 mg, 62%), mp 178-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.2 Hz, 2H), 8.04 (d, J = 3.6 Hz, 1H), 8.01 (s, 1H), 7.66-7.64 (m, 1H), 7.61-7.58 (m, 1H), 7.53-7.49 (m, 2H), 7.44-7.41 (m, 1H), 7.33-7.28 (m, 1H), 6.90 (d, J = 2.4 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.2 (d, J_{C-F} = 240.0 Hz), 153.1, 150.5, 148.5, 143.4, 139.1, 138.9, 137.8, 132.2 (d, J_{C-F} = 3.8 Hz), 128.7, 128.68, 128.5, 126.9, 126.7, 123.6 (d, J_{C-F} = 10.0 Hz), 117.3 (d, J_{C-F} = 26.3 Hz), 113.4 (d, J_{C-F} = 8.8 Hz), 109.2, 107.8 (d, J_{C-F} = 25.0 Hz), 15.6. HRMS calcd for C₂₂H₁₅FNOS [M + H]⁺: 360.0853, found 360.0847. Elemental analysis calcd (%) for C₂₂H₁₄FNOS: C, 73.52; H, 3.93; N, 3.90. Found: C, 73.41; H, 3.94; N, 3.92.

6-*Chloro-1-(5-methylthiophen-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**3***y*): White solid (55.5 mg, 74%), mp 182-183 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.3 Hz, 2H), 8.01-7.99 (m, 2H), 7.94 (d, J = 1.8 Hz, 1H), 7.57-7.49 (m, 4H), 7.44-7.40 (m, 1H), 6.89 (d, J = 2.7 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 150.7, 148.1, 143.4, 139.1, 138.9, 137.8, 131.7, 129.7, 129.1, 128.74, 128.7, 128.6, 126.9, 126.7, 124.2, 121.7, 113.6, 109.2, 15.6. HRMS calcd for C₂₂H₁₅ClNOS [M + H]⁺: 376.0557 and 378.0528, found 376.0542 and 378.05231. Elemental analysis calcd (%) for C₂₂H₁₄ClNOS: C, 70.30; H, 3.75; N, 3.73. Found: C, 70.52; H, 3.73; N, 3.72.

6-Bromo-1-(5-methylthiophen-2-yl)-3-phenylbenzofuro[2,3-c]pyridine (3z): White solid (56.8 mg, 68%), mp 201-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.10 (m, 3H), 8.00-7.98 (m, 2H), 7.66-7.64 (m, 1H), 7.52-7.49 (m, 3H), 7.44-7.40 (m, 1H), 6.89 (d, J = 2.8 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 150.8, 147.9, 143.5, 139.1, 138.9, 137.8, 132.5, 131.5, 128.8, 128.7, 128.6, 127.0, 126.7, 124.8, 116.4, 114.1, 109.2, 15.6. HRMS calcd for C₂₂H₁₅BrNOS [M + H]⁺: 420.0052 and 422.0032, found 420.0045 and 422.0030. Elemental analysis calcd (%) for C₂₂H₁₄BrNOS: C, 62.87; H, 3.36; N, 3.33. Found: C, 62.59; H, 43.38; N, 3.32.

1-(5-Methylfuran-2-yl)-3-phenylbenzofuro[2,3-*c*]*pyridine* (*4a*): White solid (42.3 mg, 65%), mp 146-147 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 7.5 Hz, 2H), 8.11 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.62-7.59 (m, 1H), 7.54-7.49 (m, 3H), 7.44-7.40 (m, 2H), 6.28 (s, 1H), 2.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.5, 151.1, 148.3, 147.4, 139.7, 134.2, 132.6, 129.7, 128.7, 128.4, 127.3, 123.4, 122.7, 121.9, 114.5, 112.6, 109.8, 108.5, 14.0. HRMS calcd for C₂₂H₁₆NO₂ [M + H]⁺: 326.1176, found 326.1180. Elemental analysis calcd (%) for C₂₂H₁₅NO₂: C, 81.21; H, 4.65; N, 4.30. Found: C, 81.43; H, 4.63; N, 4.29.

1-(5-Methylfuran-2-yl)-3-(p-tolyl)benzofuro[2,3-*c*]*pyridine* (**4***b*): White solid (39.3 mg, 58%), mp 163-165 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 6.9 Hz, 3H), 8.02 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.61-7.58 (m, 1H), 7.48 (d, J = 3.2 Hz, 1H), 7.42-7.39 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 6.28 (d, J = 2.7 Hz, 1H), 2.54 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.4, 151.1, 148.4, 147.2, 138.2, 136.9, 134.0, 132.6, 129.6, 129.4, 127.1, 123.4, 122.7, 121.8, 114.3, 112.5, 109.4, 108.4, 21.2, 14.0. HRMS calcd for C₂₃H₁₈NO₂ [M + H]⁺: 340.1332, found 340.1336. Elemental analysis calcd (%) for C₂₃H₁₇NO₂: C, 81.40; H, 5.05; N, 4.13. Found: C, 81.23; H, 5.06; N, 4.14.

1-(5-*Methylfuran*-2-*yl*)-3-(*m*-tolyl)*benzofuro*[2,3-*c*]*pyridine* (**4***c*): White solid (44.1 mg, 65%), mp 121-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 8.05 (d, J = 7.2 Hz, 2H), 7.94 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.50 (d, J = 3.0 Hz, 1H), 7.44-7.39 (m, 2H), 7.25-7.23 (m, 1H), 6.30-6.29 (m, 1H), 2.55 (s, 3H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.5, 151.4, 148.3, 147.4, 139.7, 138.3, 134.1, 132.6, 129.7, 129.2, 128.6, 128.0, 124.3, 123.4, 122.7, 121.9, 114.4, 112.6, 109.8, 108.4, 21.6, 14.0. HRMS calcd for C₂₃H₁₈NO₂ [M + H]⁺: 340.1332, found 340.1330. Elemental analysis calcd (%) for C₂₃H₁₇NO₂: C, 81.40; H, 5.05; N, 4.13. Found: C, 81.25; H, 5.07; N, 4.12.

1-(5-Methylfuran-2-yl)-3-(o-tolyl)benzofuro[2,3-*c*]*pyridine* (**4***d*): Yellow oil (33.9 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.7 Hz, 1H), 7.81 (s, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.65-7.61 (m, 1H), 7.57-7.54 (m, 1H), 7.50 (d, J = 3.2 Hz, 1H), 7.45-7.41 (m, 1H), 7.33-7.29 (m, 3H), 6.28-6.27 (m, 1H), 2.50 (s, 3H), 2.496 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.6, 153.5, 148.3, 146.9, 140.7, 136.4, 133.8, 132.1, 130.8, 130.1, 129.7, 128.1, 125.8, 123.5, 122.6, 121.9, 114.5, 113.3, 112.6, 108.4, 20.6, 14.1. HRMS calcd for C₂₃H₁₈NO₂ [M + H]⁺: 340.1332, found 340.1342. Elemental analysis calcd (%) for C₂₃H₁₇NO₂: C, 81.40; H, 5.05; N, 4.13. Found: C, 81.58; H, 5.03; N, 4.12.

3-(4-Methoxyphenyl)-1-(5-methylfuran-2-yl)benzofuro[2,3-c]pyridine (4e): White solid (49.7 mg, 70%), mp 167-168 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 7.9 Hz, 2H), 8.01 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 7.7 Hz, 1H), 7.60-7.57 (m, 1H), 7.46 (s, 1H), 7.41-7.38 (m, 1H), 7.04 (d, J = 7.9 Hz, 2H), 6.27 (s, 1H), 3.88 (s, 3H), 2.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.1, 157.1, 154.4, 150.8, 148.4, 147.0, 133.9, 132.6, 132.5, 129.6, 128.4, 123.3, 122.7, 121.8, 114.3, 114.1, 112.5, 108.9, 108.4, 55.3, 14.0. HRMS calcd for C₂₃H₁₈NO₃ [M + H]⁺: 356.1281, found 356.1285. Elemental analysis calcd (%) for C₂₃H₁₇NO₃: C, 77.73; H, 4.82; N, 3.94. Found: C, 77.60; H, 4.44; N, 3.93.

3-(4-Fluorophenyl)-1-(5-methylfuran-2-yl)benzofuro[2,3-c]pyridine (**4f**): White solid (43.9 mg, 64%), mp 160-161 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.15-8.12 (m, 2H), 8.00 (d, J = 9.6 Hz, 2H), 7.68 (d, J = 8.3 Hz, 1H), 7.61-7.58 (m, 1H), 7.46 (d, J = 3.2 Hz, 1H), 7.42-7.39 (m, 1H), 7.20-7.17 (m, 2H), 6.27 (d, J = 2.5 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.3 (d, J_{C-F} = 246.3 Hz), 157.1, 154.5, 150.1, 148.2, 147.2, 136.0 (d, J_{C-F} = 2.5 Hz), 134.1, 132.6, 129.7, 128.9 (d, J_{C-F} = 7.5 Hz), 123.5, 122.6, 121.8, 115.5 (d, J_{C-F} = 21.3 Hz), 114.5, 112.6, 109.4, 108.5, 14.0. HRMS calcd for C₂₂H₁₅FNO₂ [M + H]⁺: 344.1081, found 344.1081. Elemental analysis calcd (%) for C₂₂H₁₄FNO₂: C, 76.96; H, 4.11; N, 4.08. Found: C, 77.12; H, 4.10; N, 4.06.

3-(4-Chlorophenyl)-1-(5-methylfuran-2-yl)benzofuro[2,3-c]pyridine (4g): White solid (51.7 mg, 72%), mp 168-170 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 2H), 7.98-7.95 (m, 2H), 7.65 (d, J = 8.3 Hz, 1H), 7.59-756 (m, 1H), 7.46-7.43 (m, 3H), 7.40-7.37 (m, 1H), 6.26 (d, J = 2.1 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 154.5, 149.6, 148.1, 147.3, 138.1, 134.4, 134.2, 132.5, 129.7, 128.7, 128.4, 123.4, 122.5, 121.7, 114.6, 112.5, 109.4, 108.5, 14.0. HRMS calcd for C₂₂H₁₅ClNO₂ [M + H]⁺: 360.0786 and 362.0756, found 360.0782 and 362.0758. Elemental analysis calcd (%) for C₂₂H₁₄ClNO₂: C, 73.44; H, 3.92; N, 3.89. Found: C, 73.26; H, 3.94; N, 4.88.

3-(4-Bromophenyl)-1-(5-methylfuran-2-yl)benzofuro[2,3-c]pyridine (**4h**): White solid (56.4 mg, 70%), mp 163-164 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.01-7.95 (m, 4H), 7.65 (d, J = 8.3 Hz, 1H), 7.61-7.56 (m, 3H), 7.44 (d, J = 3.2 Hz, 1H), 7.40-7.37 (m, 1H), 6.27 (d, J = 2.5 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 154.5, 149.7, 148.1, 147.3, 138.6, 134.2, 132.5, 131.7, 129.7, 128.7, 123.5, 122.7, 122.5, 121.8, 114.6, 112.5, 109.4, 108.5, 14.0. HRMS calcd for C₂₂H₁₅BrNO₂ [M + H]⁺: 404.0281 and 406.0260, found 404.0285 and 406.0259. Elemental analysis calcd (%) for C₂₂H₁₄BrNO₂: C, 65.36; H, 3.49; N, 3.46. Found: C, 65.23; H, 3.51; N, 3.47.

1-(5-Methylfuran-2-yl)-3-(4-(trifluoromethyl)phenyl)benzofuro[2,3-*c*]*pyridine* (4*i*): White solid (51.1 mg, 65%), mp 180-181 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 8.1 Hz, 2H), 8.07 (s, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.47 (d, J = 3.2 Hz, 1H), 7.43-740 (m, 1H), 6.28 (d, J = 3.2 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.7, 149.3, 148.1, 147.6, 143.0, 134.5, 132.6, 130.2 (d, J_{C-F} = 32.5 Hz), 129.9, 127.4, 125.6 (q, J_{C-F} = 3.8 Hz), 124.4 (d, J_{C-F} = 270.0 Hz), 123.6, 122.4, 121.8, 114.8, 112.6, 110.1, 108.5, 14.0. HRMS calcd for C₂₃H₁₅F₃NO₂ [M + H]⁺: 394.1049, found 394.1050. Elemental analysis calcd (%) for C₂₃H₁₄F₃NO₂: C, 70.23; H, 3.59; N, 3.56. Found: C, 70.36; H, 3.57; N, 3.55.

1-(5-Methylfuran-2-yl)-3-(naphthalen-2-yl)benzofuro[*2,3-c*]*pyridine* (*4j*): White solid (42.0 mg, 56%), mp 189-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.35-8.33 (m, 1H), 8.25 (s, 1H), 8.07 (d, J = 7.7 Hz, 1H), 8.02-7.97 (m, 2H), 7.90-7.88 (m, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.64-7.60 (m, 1H), 7.55-7.49 (m, 3H), 7.56-7.42 (m, 1H), 6.31 (d, J = 3.1 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 154.6, 150.9, 148.3, 147.4, 137.1, 134.3, 133.7, 133.4, 132.7, 129.7, 128.7, 128.3, 127.7, 126.3, 126.2, 126.1, 125.2, 123.5, 122.7, 121.9, 114.6, 112.6, 110.1, 108.5, 14.1. HRMS calcd for C₂₆H₁₈NO₂ [M + H]⁺: 376.1332, found 376.1337. Elemental analysis calcd (%) for C₂₆H₁₇NO₂: C, 83.18; H, 4.56; N, 3.73. Found: C,

82.99; H, 4.54; N, 3.72.

1-(5-Methylfuran-2-yl)-3-(thiophen-2-yl)benzofuro[2,3-*c*]*pyridine* (**4***k*): Yellow solid (31.8 mg, 48%), mp 138-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.70-7.66 (m, 2H), 7.62-7.58 (m, 1H), 7.46 (d, J = 3.2 Hz, 1H), 7.42-7.39 (m, 2H), 7.15-7.13 (m, 1H), 6.27 (d, J = 2.5 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 154.6, 148.0, 147.0, 146.4, 145.2, 134.1, 132.6, 129.8, 127.9, 126.8, 124.1, 123.5, 122.5, 121.9, 114.6, 112.6, 108.5, 108.1, 14.0. HRMS calcd for C₂₀H₁₄NO₂S [M + H]⁺: 332.0740, found 332.0746. Elemental analysis calcd (%) for C₂₀H₁₃NO₂S: C, 72.49; H, 3.95; N, 4.23. Found: C, 72.62; H, 3.94; N, 4.21.

1-(*Furan-2-yl*)-1-(5-methylfuran-2-yl)benzofuro[2,3-c]pyridine (**4**l): Yellow solid (26.5 mg, 42%), mp 135-136 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.63-7.64 (m, 1H), 7.56 (s, 1H), 7.48 (d, J = 3.2 Hz, 1H), 7.44-7.41 (m, 1H), 7.19 (d, J = 3.3 Hz, 1H), 6.58-6.57 (m, 1H), 6.27 (d, J = 3.0 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 154.7, 154.0, 147.8, 146.9, 143.4, 142.7, 134.3, 132.4, 129.8, 123.6, 122.6, 122.0, 114.8, 112.6, 112.0, 108.5, 108.1, 108.06, 14.0. HRMS calcd for C₂₀H₁₄NO₃ [M + H]⁺: 316.0968, found 316.0970. Elemental analysis calcd (%) for C₂₀H₁₃NO₃: C, 76.18; H, 4.16; N, 4.44. Found: C, 76.02; H, 4.14; N, 4.43.

6-*Methyl-1-(5-methylfuran-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**4***m*): White solid (40.7 mg, 60%), mp 176-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 2H), 8.08 (s, 1H), 7.83 (s, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.54-7.49 (m, 3H), 7.44-7.40 (m, 2H), 6.29-6.28 (m, 1H), 2.54 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 154.5, 151.0, 148.3, 147.7, 139.8, 134.1, 133.2, 132.7, 131.0, 128.7, 128.4, 127.3, 122.7, 121.7, 114.5, 112.1, 109.8, 108.5, 21.3, 14.0. HRMS calcd for C₂₃H₁₈NO₂ [M + H]⁺: 340.1332, found 340.1330. Elemental analysis calcd (%) for C₂₃H₁₇NO₂: C, 81.40; H, 5.05; N, 4.13. Found: C, 81.59; H, 5.03; N, 4.12.

6-*Methoxy*-1-(5-*methylfuran*-2-*yl*)-3-*phenylbenzofuro*[2,3-*c*]*pyridine* (**4***n*): White solid (41.2 mg, 58%), mp 121-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.6 Hz, 2H), 8.05 (s, 1H), 7.57-7.49 (m, 3H), 7.48-7.40 (m, 1H), 7.19-7.16 (m, 1H), 6.27 (d, J = 3.2, 1H), 3.91 (s, 3H), 2.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 154.4, 151.9, 150.7, 148.3, 148.0, 139.8, 134.2, 132.8, 128.7, 128.3, 127.2, 123.1, 118.4, 114.4, 113.1, 109.7, 108.4, 104.1, 56.0, 14.0. HRMS calcd for C₂₃H₁₈NO₃ [M + H]⁺: 356.1281, found 356.1288. Elemental analysis calcd (%) for C₂₃H₁₇NO₃: C, 77.73; H, 4.82; N, 3.94. Found: C, 77.61; H, 4.84; N, 3.95.

6-*Fluoro-1-(5-methylfuran-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**4***o*): White solid (44.5 mg, 62%), mp 163-164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.14 (m, 2H), 8.03 (s, 1H), 7.69-7.66 (m, 1H), 7.64-7.61 (m, 1H), 7.54-750 (m, 2H), 7.45-7.41 (m, 2H), 7.34-7.29 (m, 1H), 6.28 (d, J = 2.6 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.2 (d, J_{C-F} = 240.0 Hz), 154.7, 153.1, 151.2, 148.23, 148.2, 139.5, 134.5, 132.3 (d, J_{C-F} = 3.8 Hz), 128.7, 128.5, 127.2, 123.6 (d, J_{C-F} = 10 Hz), 117.3 (d, J_{C-F} = 25.0 Hz), 114.6, 113.4 (d, J_{C-F} = 8.8 Hz), 109.6, 108.5, 107.7 (d, J_{C-F} = 25.0 Hz), 14.0. HRMS calcd for C₂₂H₁₅FNO₂ [M + H]⁺: 344.1081, found 344.1077. Elemental analysis calcd (%) for C₂₂H₁₄FNO₂: C, 76.96; H, 4.11; N, 4.08. Found: C, 77.09; H, 4.09; N, 4.07.

6-Bromo-1-(5-methylfuran-2-yl)-3-phenylbenzofuro[2,3-c]pyridine (**4p**): White solid (53.2 mg, 66%), mp 171-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.12 (m, 3H), 8.00 (s, 1H), 7.68-7.65 (m, 1H), 7.55-7.49 (m, 3H), 7.44-7.41 (m, 2H), 6.27-6.26 (m, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 154.7, 151.4, 148.1, 147.6, 139.4, 134.4, 132.5, 131.5, 128.7, 128.5, 127.2, 124.7, 124.6, 116.3, 114.6, 114.1, 109.5, 108.5, 14.0. HRMS calcd for C₂₂H₁₅BrNO₂ [M + H]⁺: 404.0281 and 406.0260, found 404.0285 and 406.0268. Elemental analysis calcd (%) for C₂₂H₁₄BrNO₂: C, 65.36; H, 3.49; N, 3.46. Found: C, 65.29; H, 3.50; N, 4.47.

1-(1-Methyl-1H-pyrrol-2-yl)-3-phenylbenzofuro[2,3-*c*]*pyridine* (**5***a*): Yellow oil (29.8 mg, 48%). ¹H NMR (500 MHz, CDCl₃) δ 8.15-8.11 (m, 3H), 8.06 (d, J = 7.7 Hz, 1H),

7.71 (d, J = 8.3 Hz, 1H), 7.63-7.60 (m, 1H), 7.54-7.51 (m, 2H), 7.45-7.41 (m, 3H), 6.88 (s, 1H), 6.38 (d, J = 2.6 Hz, 1H), 4.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 150.1, 148.6, 140.1, 137.5, 132.2, 129.5, 128.7, 128.3, 127.4, 127.1, 127.0, 123.3, 123.0, 121.7, 114.7, 112.6, 108.6, 108.0, 38.0. HRMS calcd for C₂₂H₁₇N₂O [M + H]⁺: 325.1335, found 325.1340. Elemental analysis calcd (%) for C₂₂H₁₆N₂O: C, 81.46; H, 4.97; N, 8.64. Found: C, 81.28; H, 4.98; N, 8.65.

1-(*1-Methyl-1H-pyrrol-2-yl*)-*3*-(*p-tolyl*)*benzofuro*[*2*,*3-c*]*pyridine* (*5b*): White solid (40.6 mg, 60%), mp 131-132 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.03 (m, 4H), 7.70 (d, J = 8.3 Hz, 1H), 7.62-7.59 (m, 1H), 7.44-7.40 (m, 2H), 7.33 (d, J = 7.9 Hz, 2H), 6.88-6.87 (m, 1H), 6.38-6.37 (m, 1H), 4.27 (s, 3H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 150.1, 148.4, 138.1, 137.3, 137.2, 132.2, 129.43, 129.4, 127.4, 127.0, 126.8, 123.2, 123.0, 121.7, 114.6, 112.6, 108.2, 108.0, 38.0. 21.2. HRMS calcd for C₂₃H₁₉N₂O [M + H]⁺: 339.1492, found 339.1492. Elemental analysis calcd (%) for C₂₃H₁₈N₂O: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.85; H, 5.34; N, 8.26.

1-(1-Methyl-1H-pyrrol-2-yl)-3-(m-tolyl)benzofuro[*2*,*3-c*]*pyridine* (*5c*): White solid (39.2 mg, 58%), mp 111-112 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 8.08 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 9.4 Hz, 2H), 7.72 (d, J = 8.3 Hz, 1H), 7.64-7.61 (m, 1H), 7.46-7.42 (m, 3H), 7.28 (s, 1H), 6.91-6.90 (m, 1H), 6.40-6.39 (m, 1H), 4.28 (s, 3H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 150.1, 148.5, 139.9, 138.2, 137.3, 132.2, 129.5, 129.0, 128.6, 127.7, 127.3, 127.1, 124.2, 123.3, 123.0, 121.7, 114.6,

112.6, 108.6, 108.0, 37.9, 21.7. HRMS calcd for $C_{23}H_{19}N_2O$ [M + H]⁺: 339.1492, found 339.1495. Elemental analysis calcd (%) for $C_{23}H_{18}N_2O$: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.46; H, 5.37; N, 8.29.

1-(1-Methyl-1H-pyrrol-2-yl)-3-(o-tolyl)benzofuro[2,3-*c*]*pyridine* (5*d*): Yellow oil (37.2 mg, 55%). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 1H), 7.76 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.63-7.60 (m, 1H), 7.54 (d, J = 6.5 Hz, 1H), 7.44-7.40 (m, 2H), 7.35-7.32 (m, 3H), 6.84-6.83 (m, 1H), 6.37-6.35 (m, 1H), 4.14 (s, 3H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 152.3, 148.0, 141.2, 137.2, 135.9, 131.6, 130.6, 130.0, 129.5, 127.8, 127.3, 127.0, 125.7, 123.3, 122.9, 121.8, 114.6, 112.6, 112.3, 107.9, 37.8, 20.6. HRMS calcd for C₂₃H₁₉N₂O [M + H]⁺: 339.1492, found 339.1500. Elemental analysis calcd (%) for C₂₃H₁₈N₂O: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.41; H, 5.38; N, 8.29.

3-(4-Methoxyphenyl)-1-(1-methyl-1H-pyrrol-2-yl)benzofuro[2,3-c]pyridine (5e): White solid (48.1 mg, 68%), mp 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.02 (m, 4H), 7.69 (d, J = 8.3 Hz, 1H), 7.62-7.58 (m, 1H), 7.43-7.39 (m, 2H), 7.04 (d, J = 8.5 Hz, 2H), 6.88-6.87 (m, 1H), 6.38-6.37 (m, 1H), 4.26 (s, 3H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 157.0, 149.8, 148.2, 137.2, 132.7, 132.2, 129.4, 128.1, 127.4, 127.0, 123.2, 123.0, 121.7, 114.6, 114.1, 112.6, 108.0, 107.7, 55.4, 38.0. HRMS calcd for C₂₃H₁₉N₂O₂ [M + H]⁺: 355.1441, found 355.1449. Elemental analysis calcd (%) for C₂₃H₁₈N₂O₂: C, 77.95; H, 5.12; N, 7.90. Found: C, 77.68; H,

5.14; N, 7.91.

3-(4-Fluorophenyl)-1-(1-methyl-1H-pyrrol-2-yl)benzofuro[2,3-c]pyridine (5f): White solid (47.9 mg, 70%), mp 165-166 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.07 (m, 2H), 8.02 (d, J = 10.0 Hz, 2H), 7.69 (d, J = 8.3 Hz, 1H), 7.62-7.59 (m, 1H), 7.44-7.41 (m, 2H), 7.21-7.17 (m, 2H), 6.88 (s, 1H), 6.38-6.37 (m, 1H), 4.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.1 (d, J_{C-F} = 246.3 Hz), 156.9, 149.0, 148.4, 137.5, 136.2 (d, J_{C-F} = 2.5 Hz), 132.2, 129.5, 128.6 (d, J_{C-F} = 7.5 Hz), 127.2, 127.1, 123.3, 122.9, 121.7, 115.5 (d, J_{C-F} = 21.3 Hz), 114.8, 112.6, 108.2, 108.0, 38.0. HRMS calcd for C₂₂H₁₆FN₂O [M + H]⁺: 343.1241, found 343.1248. Elemental analysis calcd (%) for C₂₂H₁₅FN₂O: C, 77.18; H, 4.42; N, 8.18. Found: C, 77.01; H, 4.44; N, 8.19.

3-(4-Chlorophenyl)-1-(1-methyl-1H-pyrrol-2-yl)benzofuro[2,3-c]pyridine (**5g**): White solid (53.0 mg, 74%), mp 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.01 (m, 4H), 7.68 (d, J = 8.3 Hz, 1H), 7.62-7.58 (m, 1H), 7.47-741 (m, 4H), 6.88 (s, 1H), 6.38-6.37 (m, 1H), 4.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 148.7, 1485, 138.5, 137.6, 134.2, 132.1, 129.5, 128.8, 128.1, 127.2, 123.3, 122.8, 121.7, 114.8, 112.6, 108.3, 108.1, 38.0. HRMS calcd for C₂₂H₁₆ClN₂O [M + H]⁺: 359.0946 and 361.0916, found 359.0948 and 361.0922. Elemental analysis calcd (%) for C₂₂H₁₅ClN₂O: C, 73.64; H, 4.21; N, 7.81. Found: C, 73.82; H, 4.20; N, 7.79.

1-(1-Methyl-1H-pyrrol-2-yl)-3-(4-(trifluoromethyl)phenyl)benzofuro[2,3-*c*]*pyridine* (*5h*): White solid (59.6 mg, 76%), mp 173-174 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.1 Hz, 2H), 8.08 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 8.3 Hz, 1H), 7.63-7.59 (m, 1H), 7.44-7.42 (m, 2H), 6.89-6.88 (m, 1H), 6.39-6.37 (m, 1H), 4.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 148.8, 148.3, 143.4, 137.8, 132.1, 130.0 (d, J_{C-F} = 32.5 Hz), 129.7, 127.4, 127.1, 125.6 (d, J_{C-F} = 3.8 Hz), 124.4 (d, J_{C-F} = 268.8 Hz), 123.4, 122.7, 121.7, 115.0, 112.6, 108.9, 108.1, 38.1. HRMS calcd for C₂₃H₁₆F₃N₂O [M + H]⁺: 393.1209, found 393.1212. Elemental analysis calcd (%) for C₂₃H₁₅F₃N₂O: C, 70.40; H, 3.85; N, 7.14. Found: C, 70.61 H, 3.83; N, 7.12.

1-(1-Methyl-1H-pyrrol-2-yl)-3-(naphthalen-2-yl)benzofuro[2,3-*c*]*pyridine* (**5i**): White solid (54.6 mg, 73%), mp 191-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.29 (d, J = 8.6 Hz, 1H), 8.22 (s, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 7.0 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.63-7.59 (m, 1H), 7.56-7.52 (m, 2H), 7.46-7.42 (m, 2H), 6.91 (s, 1H), 6.41-6.40 (m, 1H), 4.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 149.9, 148.6, 137.5, 137.4, 133.6, 133.3, 132.2, 129.5, 128.6, 128.3, 127.7, 127.4, 127.1, 126.22, 126.2, 126.0, 125.1, 123.3, 123.0, 121.7, 114.7, 112.6, 108.8, 108.0, 38.0. HRMS calcd for C₂₆H₁₉N₂O [M + H]⁺: 375.1492, found 375.1492. Elemental analysis calcd (%) for C₂₆H₁₈N₂O: C, 83.40; H, 4.85; N,

7.48. Found: C, 83.24; H, 4.86; N, 7.50.

1-(1-Methyl-1H-pyrrol-2-yl)-3-(thiophen-2-yl)benzofuro[2,3-*c*]*pyridine* (*5j*): Yellow solid (33.0 mg, 50%), mp 136-138 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 1H), 7.99 (s, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.64-7.58 (m, 2H), 7.44-7.40 (m, 2H), 7.37 (d, J = 5.0 Hz, 1H), 7.15-7.14 (m, 1H), 6.88 (s, 1H), 6.37-6.35 (m, 1H), 4.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 148.1, 146.1, 145.2, 137.3, 132.0, 129.6, 127.9, 127.4, 126.9, 126.5, 123.3, 123.1, 122.8, 121.8, 114.9, 112.6, 108.0, 106.5, 38.3. HRMS calcd for C₂₀H₁₅N₂OS [M + H]⁺: 331.0900, found 331.0900. Elemental analysis calcd (%) for C₂₀H₁₄N₂OS: C, 72.70; H, 4.27; N, 8.48. Found: C, 72.89; H, 4.26; N, 8.46.

3-(*Furan-2-yl*)-1-(1-methyl-1H-pyrrol-2-yl)benzofuro[2,3-c]pyridine (**5k**): Yellow solid (26.4 mg, 42%), mp 129-130 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.03 (m, 2H), 7.69 (d, J = 8.3 Hz, 1H), 7.62-7.56 (m, 2H), 7.44-7.39 (m, 2H), 7.04 (d, J = 3.2 Hz, 1H), 6.87 (s, 1H), 6.57-6.56 (m, 1H), 6.36-6.35 (m, 1H), 4.24 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 154.6, 148.0, 142.5, 142.3, 137.6, 131.9, 129.5, 127.2, 127.0, 123.3, 122.9, 121.8, 114.8, 112.6, 112.0, 108.0, 107.4, 106.7, 37.8. HRMS calcd for C₂₀H₁₅N₂O₂ [M + H]⁺: 315.1128, found 315.1138. Elemental analysis calcd (%) for C₂₀H₁₄N₂O₂: C, 76.42; H, 4.49; N, 8.91. Found: C, 76.58; H, 4.47; N, 8.89.

6-*Methyl-1-(1-methyl-1H-pyrrol-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (*5l*): White solid (27.0 mg, 40%), mp 148-149 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 2H), 8.08 (s, 1H), 7.85 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.53-7.50 (m, 2H), 7.44-7.39 (m, 3H), 6.88 (s, 1H), 6.36 (s, 1H), 4.26 (s, 3H), 2.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 149.9, 148.9, 140.0, 137.4, 133.0, 132.3, 130.8, 128.7, 128.3, 127.3, 127.1, 127.0, 122.9, 121.6, 114.7, 112.1, 108.6, 108.0, 38.0, 21.3. HRMS calcd for C₂₃H₁₉N₂O [M + H]⁺: 339.1492, found 339.1499. Elemental analysis calcd (%) for C₂₃H₁₈N₂O: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.45; H, 5.37; N, 8.30.

6-*Methoxy-1-(1-methyl-1H-pyrrol-2-yl)-3-phenylbenzofuro*[2,3-c]*pyridine* (5*m*): White solid (42.5 mg, 60%), mp 151-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 7.5 Hz, 2H), 8.07 (s, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.53-7.47 (m, 3H), 7.44-7.39 (m, 2H), 7.20-7.18 (m, 1H), 6.87 (s, 1H), 6.37-6.36 (m, 1H), 4.27 (s, 3H), 3.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.2, 151.7, 149.7, 149.2, 140.1, 137.5, 132.3, 128.7, 128.2, 127.4, 127.0, 126.9, 123.4, 118.1, 114.6, 113.1, 108.4, 108.0, 104.1, 56.1, 38.0. HRMS calcd for C₂₃H₁₉N₂O₂ [M + H]⁺: 355.1441, found 355.1442. Elemental analysis calcd (%) for C₂₃H₁₈N₂O₂: C, 77.95; H, 5.12; N, 7.90. Found: C, 77.76; H, 5.13; N,7.92.

6-*Fluoro-1-(1-methyl-1H-pyrrol-2-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**5***n*): White solid (30.8 mg, 45%), mp 158-160 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 7.8 Hz, 2H), 8.04 (s, 1H), 7.71-7.69 (m, 1H), 7.65-7.62 (m, 1H), 7.53-7.50 (m, 2H), 7.44-7.39 (m, 2H), 7.34-7.32 (m, 1H), 6.88 (s, 1H), 6.37-6.36 (m, 1H), 4.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.2 (d, J_{C-F} = 238.8 Hz), 152.9, 150.1, 149.4, 139.9, 137.9, 131.8 (d, J_{C-F} = 3.8 Hz), 128.7, 128.3, 127.3, 127.2, 126.9, 123.9 (d, J_{C-F} = 10.0 Hz), 117.1 (d, J_{C-F} = 26.3 Hz), 114.8, 113.5 (d, J_{C-F} = 8.8 Hz), 108.4, 108.1, 107.6 (d, J_{C-F} = 25.0 Hz), 38.1. HRMS calcd for C₂₂H₁₆FN₂O [M + H]⁺: 343.1241, found 343.1239. Elemental analysis calcd (%) for C₂₂H₁₅FN₂O: C, 77.18; H, 4.42; N, 8.18. Found: C, 77.32; H, 4.41; N, 8.17.

6-Bromo-1-(1-methyl-1H-pyrrol-2-yl)-3-phenylbenzofuro[2,3-c]pyridine (**5o**): White solid (40.2 mg, 50%), mp 158-159 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 1.9 Hz, 1H), 8.09 (d, J = 7.5 Hz, 2H), 7.99 (s, 1H), 7.68-7.66 (m, 1H), 7.55-7.50 (m, 3H), 7.44-7.42 (m, 1H), 7.38-7.37 (m, 1H), 6.87 (d, J = 1.8 Hz, 1H), 6.37-6.36 (m, 1H), 4.24 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 150.3, 148.7, 139.7, 137.7, 132.3, 131.0, 128.7, 128.4, 127.4, 127.0, 126.9, 125.0, 124.6, 116.2, 114.9, 114.1, 108.3, 108.1, 38.1. HRMS calcd for C₂₂H₁₆BrN₂O [M + H]⁺: 403.0441 and 405.0420, found 403.0443 and 405.0426. Elemental analysis calcd (%) for C₂₂H₁₅BrN₂O: C, 65.52; H, 3.75; N, 6.95. Found: C, 65.36; H, 3.74; N, 6.94.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-phenylbenzofuro[*2,3-c*]*pyridine* (*6a*): White solid (66.7 mg, 86%), mp 227-228 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 10.2 Hz, 3H), 8.12 (d, J = 7.7 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.64-7.59 (m, 2H), 7.55-7.52 (m, 2H), 7.47-7.39 (m, 3H), 7.30-7.27 (m, 1H), 7.22-7.19 (m, 1H), 3.83 (s, 3H), 2.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 150.9, 149.8, 140.3, 139.9, 137.5, 137.1, 132.3, 129.5, 128.6, 128.2, 127.1, 127.0, 123.2, 121.9, 121.4, 120.2, 120.16, 112.5, 109.2, 109.0, 108.9, 29.7, 21.1. HRMS calcd for C₂₇H₂₁N₂O [M + H]⁺: 389.1648, found 389.1652. Elemental analysis calcd (%) for C₂₇H₂₀N₂O: C, 83.48; H, 5.19; N, 7.21. Found: C, 83.59; H, 5.18; N, 7.20.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-(p-tolyl)benzofuro[2,3-*c*]*pyridine* (**6***b*): White solid (64.3 mg, 80%), mp 219-220 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.14-8.11 (m, 3H), 7.87 (d, J = 7.8 Hz, 1H), 7.63-7.58 (m, 2H), 7.46-7.42 (m, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.29-7.28 (m, 1H), 7.21-7.17 (m, 1H), 3.83 (s, 3H), 2.73 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 151.0, 149.7, 140.2, 138.0, 137.4, 137.3, 137.1, 132.2, 129.4, 129.35, 127.0, 126.9, 123.3, 123.1, 121.8, 121.3, 120.3, 120.1, 112.5, 109.4, 108.8, 108.5, 29.6, 21.2, 12.0. HRMS calcd for C₂₈H₂₃N₂O [M + H]⁺: 403.1805, found 403.1803. Elemental analysis calcd (%) for C₂₈H₂₂N₂O: C, 83.56; H, 5.51; N, 6.96. Found: C, 83.74; H, 5.49; N,

7.94.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-(m-tolyl)benzofuro[2,3-*c*]*pyridine* (**6***c*): White solid (61.9 mg, 77%), mp 206-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.14-8.05 (m, 3H), 7.92 (d, J = 7.8 Hz, 1H), 7.65-7.58 (m, 2H), 7.47-7.40 (m, 3H), 7.31-7.27 (m, 2H), 7.23-7.20 (m, 1H), 3.83 (s, 3H), 2.74 (s, 3H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 151.2, 149.9, 140.3, 140.1, 138.2, 137.5, 137.2, 132.3, 129.5, 129.0, 128.6, 127.8, 127.1, 124.2, 123.3, 123.2, 121.9, 121.4, 120.4, 120.2, 112.6, 109.4, 109.1, 108.9, 29.7, 21.7, 12.1. HRMS calcd for C₂₈H₂₃N₂O [M + H]⁺: 403.1805, found 403.1798. Elemental analysis calcd (%) for C₂₈H₂₂N₂O: C, 83.56; H, 5.51; N, 6.96. Found: C, 83.69; H, 5.48; N, 7.95.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-(o-tolyl)benzofuro[*2,3-c*]*pyridine* (*6d*): White solid (22.5 mg, 28%), mp 206-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.86 Hz, 1H), 7.94 (s, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.68-7.60 (m, 3H), 7.48-7.44 (m, 1H), 7.42-7.36 (m, 4H), 7.32-7.28 (m, 1H), 7.24-7.20 (m, 1H), 3.81 (s, 3H), 2.70 (s, 3H), 2.59 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 153.6, 149.5, 141.3, 140.0, 137.2, 137.0, 135.9, 131.5, 130.5, 130.2, 129.5, 127.8, 127.0, 125.7, 123.2, 123.1, 121.9, 121.2, 120.1, 120.0, 112.9, 112.5, 109.1, 108.8, 29.6, 20.8, 11.9. HRMS calcd for C₂₈H₂₃N₂O [M + H]⁺: 403.1805, found 403.1795. Elemental analysis calcd (%) for C₂₈H₂₂N₂O: C, 83.56; H, 5.51; N, 6.96. Found: C, 83.42; H, 5.52; N, 7.98.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)benzofuro[2,3-*c*]*pyridine* (*6e*): White solid (71.9 mg, 86%), mp 236-237 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.18 (m, 3H), 8.10 (d, J = 7.7 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.62-7.56 (m, 2H), 7.45-7.38 (m, 2H), 7.29-7.27 (m, 1H), 7.21-7.17 (m, 1H), 7.07-7.04 (m, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 2.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 156.9, 150.7, 149.5, 140.1, 137.4, 137.1, 132.8, 132.3, 129.4, 128.2, 127.0, 123.3, 123.1, 121.9, 121.3, 120.3, 120.1, 114.1, 112.5, 109.4, 108.9, 108.1, 55.3, 29.7, 12.1. HRMS calcd for C₂₈H₂₃N₂O₂ [M + H]⁺: 419.1754, found 419.1763. Elemental analysis calcd (%) for C₂₈H₂₂N₂O₂: C, 80.36; H, 5.30; N, 6.69. Found: C, 80.52; H, 5.28; N, 6.67.

1-(*1*,2-Dimethyl-1H-indol-3-yl)-3-(4-fluorophenyl)benzofuro[2,3-c]pyridine (**6***f*): White solid (51.2 mg, 63%), mp 219-197 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24-8.19 (m, 3H), 8.10 (d, J = 7.7 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.64-7.58 (m, 2H), 7.46-7.39 (m, 2H), 7.31-7.28 (m, 1H), 7.23-7.19 (m, 3H), 3.82 (s, 3H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.1 (d, J_{C-F} = 246.3 Hz), 156.9, 150.0, 149.8, 140.4, 137.4, 137.1, 136.2 (d, J_{C-F} = 2.5 Hz), 132.3, 129.6, 128.7 (d, J_{C-F} = 7.5 Hz), 127.0, 123.2, 123.1, 121.9, 121.4, 120.2, 120.16, 115.5 (d, J_{C-F} = 21.3 Hz), 112.5, 109.2, 108.9, 108.6, 29.7, 12.0. HRMS calcd for C₂₇H₂₀FN₂O [M + H]⁺: 407.1554, found 407.1562. Elemental analysis calcd (%) for C₂₇H₁₉FN₂O: C, 79.79; H, 4.71; N, 6.89. Found: C, 79.92; H, 4.70; N, 6.88.

3-(4-Chlorophenyl)-1-(1,2-dimethyl-1H-indol-3-yl)benzofuro[2,3-c]pyridine (**6g**): White solid (54.0 mg, 64%), mp 244-245 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (S, 1H), 8.19-8.15 (m, 2H), 8.11 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.64-7.59 (m, 2H), 7.49-7.43 (m, 3H), 7.40 (d, J = 8.0 Hz, 1H), 7.29-7.27 (m, 1H), 7.21-7.17 (m, 1H), 3.84 (s, 3H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 149.9, 149.7, 140.5, 138.5, 137.5, 137.1, 134.3, 132.3, 129.6, 128.8, 128.2, 127.0, 123.3, 123.1, 121.9, 121.4, 120.2, 120.17, 112.5, 109.2, 108.9, 108.8, 29.7, 12.1. HRMS calcd for C₂₇H₂₀ClN₂O [M + H]⁺: 423.1259 and 425.1229, found 423.1263 and 425.1225. Elemental analysis calcd (%) for C₂₇H₁₉ClN₂O: C, 76.68; H, 4.53; N, 6.62. Found: C, 76.53; H, 4.54; N, 6.64.

3-(4-Bromophenyl)-1-(1,2-dimethyl-1H-indol-3-yl)benzofuro[2,3-c]pyridin (**6**h): White solid (53.1 mg, 57%), mp 250-251 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.13-8.10 (m, 3H), 7.86 (d, J = 7.9 Hz, 1H), 7.65-7.58 (m, 4H), 7.46-7.38 (m, 2H), 7.29-7.28 (m, 1H), 7.21-7.17 (m, 1H), 3.83 (s, 3H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 149.9, 149.7, 140.5, 138.9, 137.5, 137.1, 132.3, 131.8, 129.6, 128.6, 127.0, 123.3, 123.1, 122.6, 121.9, 121.5, 120.2, 120.17, 112.6, 109.2, 108.9, 108.8, 29.7, 12.1. HRMS calcd for C₂₇H₂₀BrN₂O [M + H]⁺: 467.0754 and 469.0733, found 467.0753 and 469.0728. Elemental analysis calcd (%) for C₂₇H₁₉BrN₂O: C, 69.39; H, 4.10; N, 5.99. Found: C, 69.52; H, 4.09; N, 5.98.

l-(*1*,2-*Dimethyl*-1*H*-*indol*-3-*yl*)-3-(4-(*trifluoromethyl*)*phenyl*)*benzofuro*[2,3-*c*]*pyridin e* (*6i*): White solid (75.7 mg, 83%), mp 239-240 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.1 Hz, 2H), 8.29 (s, 1H), 8.13 (d, J = 7.7 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.65-7.60 (m, 2H), 7.49-7.45 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.30-7.28 (m, 1H), 7.21-7.17 (m, 1H), 3.84 (s, 3H), 2.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 150.2, 149.3, 143.2, 140.8, 137.7, 137.2, 132.5, 130.2 (d, J_{C-F} = 32.5 Hz), 129.8, 127.3, 126.9, 125.6 (d, J_{C-F} = 3.8 Hz), 124.4 (d, J_{C-F} = 270.0 Hz), 1235, 123.0, 122.0, 121.6, 120.4, 120.2, 112.6, 109.4, 109.1, 109.0, 29.8, 12.2. HRMS calcd for C₂₈H₂₀F₃N₂O [M + H]⁺: 457.1522, found 457.1514. Elemental analysis calcd (%) for C₂₈H₁₉F₃N₂O: C, 73.68; H, 4.20; N, 6.14. Found: C, 73.82; H, 4.19; N, 6.12.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-(naphthalen-2-yl)benzofuro[*2,3-c*]*pyridine* (*6j*): White solid (63.1 mg, 72%), mp 205-206 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.49-8.46 (m, 1H), 8.42 (s, 1H), 7.17 (d, J = 7.6 Hz, 1H), 8.05-8.01 (m, 3H), 7.95-7.92 (m, 1H), 7.68-7.60 (m, 2H), 7.57-7.54 (m, 2H), 7.50-7.43 (m, 2H), 7.36-7.33 (m, 1H), 7.30-7.26 (m, 1H), 3.84 (s, 3H), 2.78 (s, 3H); ¹³C NMR (125 MHz,

CDCl₃) δ 156.9, 150.8, 149.9, 140.4, 137.44, 137.4, 137.1, 133.7, 133.4, 132.3, 129.5, 128.6, 128.2, 127.6, 127.1, 126.1, 126.06, 126.0, 125.1, 123.2, 123.19, 121.9, 121.4, 120.3, 120.2, 112.5, 109.4, 109.2, 108.9, 29.6, 12.1. HRMS calcd for C₃₁H₂₃N₂O [M + H]⁺: 439.1805, found 439.1804. Elemental analysis calcd (%) for C₃₁H₂₂N₂O: C, 84.91; H, 5.06; N, 6.39. Found: C, 84.68; H, 5.07; N, 6.41.

1-(1,2-Dimethyl-1H-indol-3-yl)-3-(thiophen-2-yl)benzofuro[2,3-*c*]*pyridine* (**6***k*): White solid (49.6 mg, 63%), mp 206-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 3.5 Hz, 1H), 7.62-7.57 (m, 2H), 7.45-7.38 (m, 3H), 7.30-7.28 (m, 1H), 7.22-7.15 (m, 2H), 3.82 (s, 3H), 2.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 149.3, 146.4, 146.0, 140.3, 137.9, 137.1, 132.2, 129.6, 127.9, 126.9, 126.6, 123.4, 123.2, 123.1, 121.9, 121.4, 120.5, 120.2, 112.5, 108.9, 108.8, 107.1, 29.7, 12.1. HRMS calcd for C₂₅H₁₉N₂OS [M + H]⁺: 395.1213, found 395.1218. Elemental analysis calcd (%) for C₂₅H₁₈N₂OS: C, 76.12; H, 4.60; N, 7.10. Found: C, 76.32; H, 4.58; N, 7.08.

1-(*1*,2-*Dimethyl*-1*H*-*indol*-3-*yl*)-3-(*furan*-2-*yl*)*benzofuro*[2,3-*c*]*pyridine* (**6***l*): White solid (53.7 mg, 71%), mp 201-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.10 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.62-7.56 (m, 3H), 7.45-7.37 (m, 2H), 7.29-7.27 (m, 1H), 7.20-7.17 (m, 2H), 6.58-6.57 (m, 1H), 3.82 (s, 3H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 154.7, 149.3, 143.5, 142.4, 140.6, 137.6,

137.1, 131.9, 129.5, 127.0, 123.3, 123.2, 122.0, 121.4, 120.3, 120.2, 112.5, 112.0, 109.0, 108.8, 107.6, 107.2, 29.7, 12.0. HRMS calcd for $C_{25}H_{19}N_2O_2$ [M + H]⁺: 379.1441, found 379.1448. Elemental analysis calcd (%) for $C_{25}H_{18}N_2O_2$: C, 79.35; H, 4.79; N, 7.40. Found: C, 79.21; H, 4.80; N, 67.41.

1-(1,2-Dimethyl-1H-indol-3-yl)-6-methyl-3-phenylbenzofuro[*2,3-c*]*pyridine* (**6***m*): White solid (50.7 mg, 63%), mp 217-218 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.23 (m, 3H), 7.90 (d, J = 8.2 Hz, 2H), 7.55-7.50 (m, 3H), 7.45-7.38 (m, 3H), 7.30-7.28 (m, 1H), 7.22-7.18 (m, 1H), 3.82 (s, 3H), 2.72 (s, 3H), 2.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 150.8, 150.2, 140.2, 140.0, 137.4, 137.1, 132.9, 132.3, 130.7, 128.6, 128.2, 127.0, 123.2, 121.7, 121.3, 120.3, 120.1, 112.0, 109.3, 109.0, 108.8, 29.7, 21.3, 12.1. HRMS calcd for C₂₈H₂₃N₂O [M + H]⁺: 403.1805, found 403.1799. Elemental analysis calcd (%) for C₂₈H₂₂N₂O: C, 83.56; H, 5.51; N, 6.96. Found: C, 83.64; H, 5.50; N, 6.95.

1-(1,2-Dimethyl-1H-indol-3-yl)-6-methoxy-3-phenylbenzofuro[*2,3-c*]*pyridine* (**6***n*): White solid (67.7 mg, 81%), mp 187-188 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.23 (m, 3H), 7.90 (d, J = 7.8 Hz, 1H), 7.56-7.51 (m, 4H), 7.44-7.38 (m, 2H), 7.30-7.28 (m, 1H), 7.22-7.19 (m, 2H), 3.96 (s, 3H), 3.82 (s, 3H), 2.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.2, 151.7, 150.6, 150.56, 140.4, 140.1, 137.4, 137.1, 132.4, 128.6, 128.1, 127.02, 127.0, 123.7, 121.3, 120.3, 120.1, 118.2, 113.1, 109.3, 108.8, 104.3, 56.1,

29.7, 12.1. HRMS calcd for $C_{28}H_{23}N_2O_2$ [M + H]⁺: 419.1754, found 419.1761. Elemental analysis calcd (%) for $C_{28}H_{22}N_2O_2$: C, 80.36; H, 5.30; N, 6.69. Found: C, 80.25; H, 5.31; N, 6.70.

1-(1,2-Dimethyl-1H-indol-3-yl)-6-fluoro-3-phenylbenzofuro[*2,3-c*]*pyridine* (60): White solid (62.5 mg, 77%), mp 242-243 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 7.9 Hz, 2H), 8.20 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.77-7.75 (m, 1H), 7.57-7.54 (m, 3H), 7.47-7.44 (m, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.33-7.29 (m, 2H), 7.25-7.22 (m, 1H), 3.81 (s, 3H), 2.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0 (d, J_{C-F} = 238.8 Hz), 152.8, 150.9, 150.7, 140.6, 139.8, 137.5, 137.0, 131.9 (d, J_{C-F} = 3.8 Hz), 128.6, 128.3, 126.94, 126.9, 124.1 (d, J_{C-F} = 10 Hz), 121.4, 120.2, 120.15, 117.1 (d, J_{C-F} = 25.0 Hz), 113.3 (d, J_{C-F} = 8.8 Hz), 109.1, 108.9, 108.8, 107.7 (d, J_{C-F} = 25.0 Hz), 29.6, 12.0. HRMS calcd for C₂₇H₂₀FN₂O [M + H]⁺: 407.1554, found 407.1554. Elemental analysis calcd (%) for C₂₇H₁₉FN₂O: C, 79.79; H, 4.71; N, 6.89. Found: C, 79.68; H, 4.70; N, 6.88.

6-*Chloro-1-(1,2-dimethyl-1H-indol-3-yl)-3-phenylbenzofuro*[2,3-*c*]*pyridine* (**6***p*): White solid (64.1 mg, 76%), mp 251-252 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23-8.19 (m, 3H), 8.08 (s, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.54-7.51 (m, 4H), 7.45-7.38 (m, 2H), 7.30-7.28 (m, 1H), 7.22-7.18 (m, 1H), 3.81 (s, 3H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 151.2, 150.3, 140.7, 139.7, 137.6, 137.1, 131.3, 129.6, 128.8, 128.7,

128.4, 127.0, 126.9, 124.7, 121.7, 121.4, 120.2, 120.16, 113.6, 109.1, 108.9, 108.85, 29.7, 12.1. HRMS calcd for $C_{27}H_{20}ClN_2O$ [M + H]⁺: 423.1259 and 425.1229, found 423.1268 and 425.1230. Elemental analysis calcd (%) for $C_{27}H_{19}ClN_2O$: C, 76.68; H, 4.53; N, 6.62. Found: C, 76.79; H, 4.52; N, 6.61.

6-Bromo-1-(1,2-dimethyl-1H-indol-3-yl)-3-phenylbenzofuro[2,3-c]pyridine (6q): White solid (67.0 mg, 74%), mp 260-261 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.19 (m, 4H), 7.86 (d, J = 7.8 Hz, 1H), 7.69-7.66 (m, 1H), 7.54-7.48 (m, 3H), 7.45-7.38 (m, 2H), 7.30-7.28 (m, 1H), 7.21-7.17 (m, 1H), 3.82 (s, 3H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 151.3, 150.2, 140.6, 139.7, 137.6, 137.1, 132.3, 131.2, 128.7, 128.4, 127.0, 126.9, 125.3, 124.8, 121.5, 120.3, 120.2, 116.1, 114.1, 109.1, 108.9, 108.85, 29.7, 12.1. HRMS calcd for $C_{27}H_{20}BrN_2O$ [M + H]⁺: 467.0754 and 469.0733, found 467.0760 and 469.0741. Elemental analysis calcd (%) for $C_{27}H_{19}BrN_2O$: C, 69.39; H, 4.10; N, 5.99. Found: C, 69.52; H, 4.09; N, 5.97.

(*E*)-3-(2-(2-oxo-2-(*Thiophen-2-yl*)*ethoxy*)*phenyl*)-1-*phenylprop-2-en-1-one* (**8***a*): ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 15.9 Hz, 1H), 8.07-8.05 (m, 2H), 7.94-7.93 (m, 1H), 7.87 (d, J = 15.8 Hz, 1H), 7.71-7.69 (m, 1H), 7.66-7.64 (m, 1H), 7.59-7.55 (m, 1H), 7.51-7.47 (m, 2H), 7.36-7.32 (m, 1H), 7.16-7.14 (m, 1H), 7.07-7.03 (m, 1H), 6.89 (d, J = 8.3 Hz, 1H), 5.22 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 191.0, 187.2, 157.1, 140.5, 140.1, 138.4, 134.7, 133.0, 132.6, 131.5, 130.4, 128.6, 128.5, 128.4, 124.5, 123.9, 121.9, 112.3, 71.5.

7. NMR spectra for all products

Figure S20. ¹H NMR of 3a (500 MHz, CDCl₃) and ¹³C NMR of 3a (125 MHz, CDCl₃)

Figure S21. ¹H NMR of 3b (400 MHz, CDCl₃) and ¹³C NMR of 3b (125 MHz, CDCl₃)

Figure S22. ¹H NMR of 3c (500 MHz, CDCl₃) and ¹³C NMR of 3c (125 MHz, CDCl₃)

Figure S23. ¹H NMR of 3d (400 MHz, CDCl₃) and ¹³C NMR of 3d (125 MHz, CDCl₃)

Figure S24. ¹H NMR of 3e (400 MHz, CDCl₃) and ¹³C NMR of 3e (125 MHz, CDCl₃)

Figure S25. ¹H NMR of 3f (400 MHz, CDCl₃) and ¹³C NMR of 3f (125 MHz, CDCl₃)

Figure S26. ¹H NMR of 3g (500 MHz, CDCl₃) and ¹³C NMR of 3g (125 MHz, CDCl₃)

Figure S27. ¹H NMR of 3h (400 MHz, CDCl₃) and ¹³C NMR of 3h (125 MHz, CDCl₃)

Figure S28. ¹H NMR of 3i (500 MHz, CDCl₃) and ¹³C NMR of 3i (125 MHz, CDCl₃)

Figure S29. ¹H NMR of 3j (400 MHz, CDCl₃) and ¹³C NMR of 3j (125 MHz, CDCl₃)

Figure S30. ¹H NMR of 3k (400 MHz, CDCl₃) and ¹³C NMR of 3k (125 MHz, CDCl₃)

Figure S31. ¹H NMR of 3l (400 MHz, CDCl₃) and ¹³C NMR of 3l (125 MHz, CDCl₃)

Figure S32. ¹H NMR of 3m (400 MHz, CDCl₃) and ¹³C NMR of 3m (125 MHz, CDCl₃)

Figure S33. ¹H NMR of 3n (400 MHz, CDCl₃) and ¹³C NMR of 3n (125 MHz, CDCl₃)

Figure S34. ¹H NMR of 30 (500 MHz, CDCl₃) and ¹³C NMR of 30 (125 MHz, CDCl₃)

Figure S35. ¹H NMR of 3p (500 MHz, CDCl₃) and ¹³C NMR of 3p (125 MHz, CDCl₃)

Figure S36. ¹H NMR of 3q (400 MHz, CDCl₃) and ¹³C NMR of 3q (125 MHz, CDCl₃)

Figure S37. ¹H NMR of 3r (400 MHz, CDCl₃) and ¹³C NMR of 3r (125 MHz, CDCl₃)

Figure S38. ¹H NMR of 3s (400 MHz, CDCl₃) and ¹³C NMR of 3s (125 MHz, CDCl₃)

Figure S39. ¹H NMR of 3t (400 MHz, CDCl₃) and ¹³C NMR of 3t (125 MHz, CDCl₃)

Figure S40. ¹H NMR of 3u (400 MHz, CDCl₃) and ¹³C NMR of 3u (125 MHz, CDCl₃)

Figure S41. ¹H NMR of 3v (400 MHz, CDCl₃) and ¹³C NMR of 3v (125 MHz, CDCl₃)

Figure S42. ¹H NMR of 3w (500 MHz, CDCl₃) and ¹³C NMR of 3w (125 MHz, CDCl₃)

Figure S43. ¹H NMR of 3x (400 MHz, CDCl₃) and ¹³C NMR of 3x (125 MHz, CDCl₃)

Figure S44. ¹H NMR of 3y (400 MHz, CDCl₃) and ¹³C NMR of 3y (125 MHz, CDCl₃)

Figure S45. ¹H NMR of 3z (400 MHz, CDCl₃) and ¹³C NMR of 3z (125 MHz, CDCl₃)

Figure S46. ¹H NMR of 4a (500 MHz, CDCl₃) and ¹³C NMR of 4a (125 MHz, CDCl₃)

Figure S47. ¹H NMR of 4b (500 MHz, CDCl₃) and ¹³C NMR of 4b (125 MHz, CDCl₃)

Figure S48. ¹H NMR of 4c (400 MHz, CDCl₃) and ¹³C NMR of 4c (125 MHz, CDCl₃)

Figure S49. ¹H NMR of 4d (400 MHz, CDCl₃) and ¹³C NMR of 4d (125 MHz, CDCl₃)

Figure S50. ¹H NMR of 4e (500 MHz, CDCl₃) and ¹³C NMR of 4e (125 MHz, CDCl₃)

Figure S51. ¹H NMR of 4f (500 MHz, CDCl₃) and ¹³C NMR of 4f (125 MHz, CDCl₃)

Figure S52. ¹H NMR of 4g (500 MHz, CDCl₃) and ¹³C NMR of 4g (125 MHz, CDCl₃)

Figure S53. ¹H NMR of 4h (500 MHz, CDCl₃) and ¹³C NMR of 4h (125 MHz, CDCl₃)

Figure S54. ¹H NMR of 4i (500 MHz, CDCl₃) and ¹³C NMR of 4i (125 MHz, CDCl₃)

Figure S55. ¹H NMR of 4j (400 MHz, CDCl₃) and ¹³C NMR of 4j (125 MHz, CDCl₃)

Figure S56. ¹H NMR of 4k (400 MHz, CDCl₃) and ¹³C NMR of 4k (125 MHz, CDCl₃)

Figure S57. ¹H NMR of 4l (500 MHz, CDCl₃) and ¹³C NMR of 4l (125 MHz, CDCl₃)

Figure S58. ¹H NMR of 4m (400 MHz, CDCl₃) and ¹³C NMR of 4m (125 MHz, CDCl₃)

Figure S59. ¹H NMR of 4n (400 MHz, CDCl₃) and ¹³C NMR of 4n (125 MHz, CDCl₃)

Figure S60. ¹H NMR of 40 (400 MHz, CDCl₃) and ¹³C NMR of 40 (125 MHz, CDCl₃)

Figure S61. ¹H NMR of 4p (400 MHz, CDCl₃) and ¹³C NMR of 4p (125 MHz, CDCl₃)

Figure S62. ¹H NMR of 5a (500 MHz, CDCl₃) and ¹³C NMR of 5a (125 MHz, CDCl₃)

Figure S63. ¹H NMR of 5b (500 MHz, CDCl₃) and ¹³C NMR of 5b (125 MHz, CDCl₃)

Figure S64. ¹H NMR of 5c (500 MHz, CDCl₃) and ¹³C NMR of 5c (125 MHz, CDCl₃)

Figure S65. ¹H NMR of 5d (500 MHz, CDCl₃) and ¹³C NMR of 5d (125 MHz, CDCl₃)

Figure S66. ¹H NMR of 5e (400 MHz, CDCl₃) and ¹³C NMR of 5e (125 MHz, CDCl₃)

Figure S67. ¹H NMR of 5f (500 MHz, CDCl₃) and ¹³C NMR of 5f (125 MHz, CDCl₃)

Figure S68. ¹H NMR of 5g (400 MHz, CDCl₃) and ¹³C NMR of 5g (125 MHz, CDCl₃)

Figure S69. ¹H NMR of 5h (500 MHz, CDCl₃) and ¹³C NMR of 5h (125 MHz, CDCl₃)

Figure S70. ¹H NMR of 5i (400 MHz, CDCl₃) and ¹³C NMR of 5i (125 MHz, CDCl₃)

Figure S71. ¹H NMR of 5j (500 MHz, CDCl₃) and ¹³C NMR of 5j (125 MHz, CDCl₃)

Figure S72. ¹H NMR of 5k (500 MHz, CDCl₃) and ¹³C NMR of 5k (125 MHz, CDCl₃)

Figure S73. ¹H NMR of 5l (500 MHz, CDCl₃) and ¹³C NMR of 5l (125 MHz, CDCl₃)

Figure S74. ¹H NMR of 5m (500 MHz, CDCl₃) and ¹³C NMR of 5m (125 MHz, CDCl₃)

Figure S75. ¹H NMR of 5n (500 MHz, CDCl₃) and ¹³C NMR of 5n (125 MHz, CDCl₃)

Figure S76. ¹H NMR of 50 (500 MHz, CDCl₃) and ¹³C NMR of 50 (125 MHz, CDCl₃)

Figure S77. ¹H NMR of 6a (500 MHz, CDCl₃) and ¹³C NMR of 6a (125 MHz, CDCl₃)

Figure S78. ¹H NMR of 6b (400 MHz, CDCl₃) and ¹³C NMR of 6b (125 MHz, CDCl₃)

Figure S79. ¹H NMR of 6c (400 MHz, CDCl₃) and ¹³C NMR of 6c (125 MHz, CDCl₃)

Figure S80. ¹H NMR of 6d (400 MHz, CDCl₃) and ¹³C NMR of 6d (125 MHz, CDCl₃)

Figure S81. ¹H NMR of 6e (400 MHz, CDCl₃) and ¹³C NMR of 6e (125 MHz, CDCl₃)

Figure S82. ¹H NMR of 6f (400 MHz, CDCl₃) and ¹³C NMR of 6f (125 MHz, CDCl₃)

Figure S83. ¹H NMR of 6g (400 MHz, CDCl₃) and ¹³C NMR of 6g (125 MHz, CDCl₃)

Figure S84. ¹H NMR of 6h (400 MHz, CDCl₃) and ¹³C NMR of 6h (125 MHz, CDCl₃)

Figure S85. ¹H NMR of 6i (400 MHz, CDCl₃) and ¹³C NMR of 6i (125 MHz, CDCl₃)

Figure S86. ¹H NMR of 6j (400 MHz, CDCl₃) and ¹³C NMR of 6j (125 MHz, CDCl₃)

Figure S87. ¹H NMR of 6k (400 MHz, CDCl₃) and ¹³C NMR of 6k (125 MHz, CDCl₃)

Figure S88. ¹H NMR of 6l (400 MHz, CDCl₃) and ¹³C NMR of 6l (125 MHz, CDCl₃)

Figure S89. ¹H NMR of 6m (400 MHz, CDCl₃) and ¹³C NMR of 6m (125 MHz, CDCl₃)

Figure S90. ¹H NMR of 6n (400 MHz, CDCl₃) and ¹³C NMR of 6n (125 MHz, CDCl₃)

Figure S91. ¹H NMR of 60 (500 MHz, CDCl₃) and ¹³C NMR of 60 (125 MHz, CDCl₃)

Figure S92. ¹H NMR of 6p (400 MHz, CDCl₃) and ¹³C NMR of 6p (125 MHz, CDCl₃)

Figure S93. ¹H NMR of 6q (400 MHz, CDCl₃) and ¹³C NMR of 6q (125 MHz, CDCl₃)

Figure S94. ¹H NMR of 8a (400 MHz, CDCl₃) and ¹³C NMR of 8a (125 MHz, CDCl₃)

8. X-ray crystallographic data for product 3r, 4i, 5h, 6p

Figure S95 X-ray crystal structure 3r

Table S5. Crystal data and structure refinement for 3r .			
Identification code	mo_dd19333_0m		
Empirical formula	C23 H14 F3 N O S		
Formula weight	409.41		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 5.1204(6) Å	a= 90 °.	
	b = 15.2957(17) Å	b= 90.630(4) °.	
	c = 11.7653(14) Å	g = 90 °.	
Volume	921.40(18) Å ³		
Z	2		
Density (calculated)	1.476 Mg/m^3		
Absorption coefficient	0.220 mm ⁻¹		
F(000)	420		
Crystal size	0.170 x 0.140 x 0.100 mm ³		
Theta range for data collection	2.663 to 25.990 °.		
Index ranges	-6<=h<=6, -18<=k<=18, -14<=l<=14		
Reflections collected	15773		
Independent reflections	3614 [R(int) = 0.0668]		
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.5446		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3614 / 37 / 290		

Goodness-of-fit on F ²	1.052
Final R indices [I>2sigma(I)]	R1 = 0.0567, wR2 = 0.1453
R indices (all data)	R1 = 0.0630, wR2 = 0.1513
Absolute structure parameter	0.04(4)
Extinction coefficient	n/a
Largest diff. peak and hole	0.357 and -0.260 e.Å ⁻³

Figure S96 X-ray crystal structure 4i

 Table S6.
 Crystal data and structure refinement for 4i.

Identification code	mo_dd19331_0m	
Empirical formula	C23 H14 F3 N O2	
Formula weight	393.35	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 19.5929(10) Å	a= 90 °.
	b = 4.9462(2) Å	b=116.132(2) °.
	c = 20.1844(9) Å	g = 90 °.
Volume	1756.13(14) Å ³	
Z	4	
Density (calculated)	1.488 Mg/m^3	
Absorption coefficient	0.117 mm ⁻¹	
F(000)	808	
Crystal size	0.180 x 0.150 x 0.120 mm ³	
Theta range for data collection	2.316 to 25.499 °.	
Index ranges	-23<=h<=23, -5<=k<=5, -24<=l<=24	
Reflections collected	19900	

Independent reflections Completeness to theta = 25.242 ° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 3241 [R(int) = 0.0615] 99.5 % Semi-empirical from equivalents 0.7456 and 0.6659 Full-matrix least-squares on F^2 3241 / 48 / 291 1.017 R1 = 0.0644, wR2 = 0.1645 R1 = 0.0833, wR2 = 0.1831 0.018(4) 0.790 and -0.615 e.Å⁻³

Figure S97 X-ray crystal structure 5h

Table S7. Crystal data and structure refinement for **5h**.

Identification code	dd19330		
Empirical formula	C23 H15 F3 N2 O	C23 H15 F3 N2 O	
Formula weight	392.37		
Temperature	193(2) K	193(2) K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Monoclinic	
Space group	P 21/c		
Unit cell dimensions	a = 19.7618(6) Å	a= 90 °.	
	b = 5.1518(2) Å	b=114.9310(10) °.	
	c = 19.2059(8) Å	g = 90 °.	
Volume	1773.12(12) Å3		
Z	4		
Density (calculated)	1.470 Mg/m3		

Absorption coefficient	0.113 mm-1
F(000)	808
Crystal size	0.200 x 0.160 x 0.130 mm3
Theta range for data collection	2.273 to 25.495 °.
Index ranges	-23<=h<=23, -5<=k<=6, -21<=l<=23
Reflections collected	16683
Independent reflections	3278 [R(int) = 0.0666]
Completeness to theta = 25.242°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.3895
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	3278 / 108 / 327
Goodness-of-fit on F2	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.1176
R indices (all data)	R1 = 0.0586, wR2 = 0.1282
Extinction coefficient	0.043(5)
Largest diff. peak and hole	0.272 and -0.295 e.Å-3

Figure S98 X-ray crystal structure 6p

Table S8. Crystal data and structure refinement for **6p**.

Identification code	mo_dd19332_0m		
Empirical formula	C27 H19 Cl N2 O		
Formula weight	422.89		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	$a = 7.5249(7) \text{ Å}$ $a = 109.203(3)^{\circ}$.		

	b = 12.0711(12) Å	b= 106.952(3) °.
	c = 12.6412(13) Å	g = 98.580(3) °.
Volume	998.33(17) Å ³	
Z	2	
Density (calculated)	1.407 Mg/m ³	
Absorption coefficient	0.215 mm ⁻¹	
F(000)	440	
Crystal size	$0.180 \ge 0.160 \ge 0.130 \text{ mm}^3$	
Theta range for data collection	2.841 to 25.498 °.	
Index ranges	-9<=h<=8, -14<=k<=14, -14<=	=l<=15
Reflections collected	13828	
Independent reflections	3697 [R(int) = 0.0484]	
Completeness to theta = $25.242 \circ$	99.7 %	
Absorption correction	Semi-empirical from equivalent	ts
Max. and min. transmission	0.7456 and 0.4982	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3697 / 0 / 283	
Goodness-of-fit on F ²	1.037	
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.1362	
R indices (all data)	R1 = 0.0585, wR2 = 0.1463	
Extinction coefficient	0.038(8)	
Largest diff. peak and hole	0.337 and -0.328 e.Å ⁻³	