Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Synthesis of 3-Phosphinoylbenzofurans via Electrophilic Phosphination Cyclization

Jia Wang,*^a Yun-Jing Deng,^a Xin-Xin Yan,^b Yu-Jie Liu,^b Chun-Po Ge,^a

Yunhui Yan,^a Shujun Chao^a and Ping-Xin Zhou*^a

^aSchool of Basic Medical Sciences, Xinxiang Medical University,

Xinxiang, Henan, 453003, China

^bCollege of Pharmacy, Xinxiang Medical University, Xinxiang, Henan,

453003, China

E-mail: wangjia1990@xxmu.edu.cn; zhoupingxin518@yahoo.com

Table of Contents

1	General Remarks	S2
2	General Procedure for Synthesis of substrates 1 (1a-1o,	S2-S3
	1q-1t and 1aa-1ac)	
3	Synthesis of 1p	S 3
4	Deuterium experiment	S3
5	Characterization Data of Products	S3-S14
6	Synthesis and Characterization Data of 4a	S15
7	Synthesis and Characterization Data of 5	S15-S16
8	Synthesis and Characterization Data of 6	S16
9	Synthesis and Characterization Data of 7	S16
10	Crystallographic data of 3a	S17
11	Crystallographic data of 3p	S18
12	Crystallographic data of 3ab	S19
13	Crystallographic data of complex 5	S20
14	¹ H, ¹³ C, and ³¹ P NMR Spectra for Products	S21-S77

General Remarks

Column chromatography was carried out on silica gel (200-300 mesh). ¹H NMR spectra were recorded on 400 MHz, ¹³C NMR spectra were recorded on 100 MHz and ³¹P spectra were recorded on 162 MHz in CDCl₃. All products were further characterized by high resolution mass spectra (HRMS). Copies of their ¹H NMR, ¹³C NMR and ³¹P NMR spectra are provided in the Supporting Information. THF was distilled over Na/benzophenone. The CH₂Cl₂, DCE, CH₃CN, and toluene were distilled over CaH₂, and other solvents were used without further purification.

General Procedure for Synthesis of substrates 1 (1a-1o, 1q-1t and

1aa-1ac)

To a soluton of 1-iodo-2-methoxybenzene or (2-iodophenyl)(methyl)sulfane derivatives **A** (10 mmol) in Et₃N (20 mL) was added PdCl₂ (PPh₃)₂ (1 mol %) and CuI (2 mol %) and the reaction vial was flushed with Ar and the reaction mixture was stirred for 5 minutes. Then, a solution of ethynyltrimethylsilane **B** (1.5 equiv) in Et₃N (5 mL) were then added dropwise through a syringe for 5 minutes. The resulting solution was stirred at room temperature overnight. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by addition of saturated NH₄Cl (10 mL) and extracted with ethyl acetate (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and organic phase was concentrated under reduced pressure and purified by silica gel flash column chromatography (petroleum ether/EtOAc = 20/1) to give **C**.

To a solution of **C** in THF was added tetrabutylammonium fluoride (2.0 equiv) and the resulting solution was stirred at room temperature for 30 min, When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by water, and extracted with ethyl acetate (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc = 20/1) to give **D**.

To a soluton of **D** (3 mmol) in Et_3N (20 mL) was added $PdCl_2(PPh_3)_2$ (1 mol %) and CuI (2 mol %) and the reaction vial was flushed with Ar and the reaction mixture

was stirred for 5 minutes. Then, a solution of aryl iodide **E** (1.5 equiv) in Et_3N (5 mL) were then added dropwise. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by saturated aqueous ammonium chloride (10 mL) and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by silica gel flash column chromatography (petroleum ether/EtOAc = 20/1) to give the substrates **1** (**1a-1o**, **1q-1t and 1aa-1ac**).

Synthesis of 1p

The substrate **1p** was synthesized from 1-iodo-2-methoxybenzene and 3,3-dimethylbut-1-yne according to general procedure as mentioned above.

Deuterium experiment

In a schlenk tube, substrates **1p** (0.2 mmol) and diphenylphosphine oxide (0.4 mmol) were placed with a magnetic stir bar under argon atmosphere. Then, toluene (1 mL) and Et₃N (0.4 mmol) were added by a syringe. The resulting mixture was stirred 2 min, Tf₂O (5.0 equiv) was added by a syringe. The reaction mixture was stirred at 60 °C for 1 h. After cooling, the reaction mixture was quenched by D₂O and NaHCO₃ and oxidized with H₂O₂ (30% aq, 0.5 mL). The resulting mixture was added saturated Na₂S₂O₃ and extracted with ethyl acetate (3 x 10 mL). The combined organic layer was washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by silica gel flash column chromatography (petroleum ether/EtOAc = 2/1) to give the product phosphine oxide **3p-D**.

The ¹H and ²D NMR analyses showed 100% deuterium incorporation of product.

Diphenyl(2-phenylbenzofuran-3-yl)phosphine oxide **3a** White solid (73.3 mg, 93%), mp: 135-137 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78-7.72 (m, 6H), 7.54 (d, J = 8.4 Hz, 1H), 7.44-7.40 (m, 2H), 7.35-7.31 (m, 4H), 7.27-7.15 (m, 4H), 6.99 (t, J = 7.6

Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.2 (d, J = 17 Hz), 154.2 (d, J = 11 Hz), 132.7 (d, J = 108 Hz), 131.7 (d, J = 3 Hz), 131.5 (d, J = 10 Hz), 129.7, 129.3, 129.3 (d, J = 3 Hz), 129.2, 128.4 (d, J = 12 Hz), 127.7, 124.8, 123.3, 121.7, 111.1, 106.6 (d, J = 116 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.52. HRMS m/z Calcd for C₂₆H₁₉O₂P: [M+H]⁺ = 395.1195. Found: 395.1190.

Diphenyl(2-(*o*-tolyl)benzofuran-3-yl)phosphine oxide **3b** White solid (74.3 mg, 91%), mp: 155-157 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.67-7.62 (m, 4H), 7.53 (d, J = 8.0 Hz, 1H), 7.38 (td, J = 7.2, 1.2 Hz, 2H), 7.33-7.24 (m, 6H), 7.16-7.08 (m, 3H), 6.97 (d, J = 7.6 Hz, 1H), 6.88 (t, J = 7.2 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.8 (d, J = 18 Hz), 154.3 (d, J = 11 Hz), 137.5, 132.4 (d, J = 108 Hz), 131.6 (d, J = 3 Hz), 131.4, 131.3, 129.8, 129.6, 129.0, 128.8 (d, J = 8 Hz), 128.2, 128.1, 125.0, 123.5, 122.3, 111.1, 108.7 (d, J = 118 Hz), 20.0. ³¹P NMR (CDCl₃, 162 MHz): δ 18.73. HRMS m/z Calcd for C₂₇H₂₁NaO₂P: [M+Na]⁺ = 431.1171. Found: 431.1172.

Diphenyl(2-(*m*-tolyl)benzofuran-3-yl)phosphine oxide **3c** White solid (79.2 mg, 97%), mp: 96-98 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.77-7.72 (m, 4H), 7.55 (s, 1H), 7.52 (d, *J* = 5.6 Hz, 2H), 7.43-7.39 (m, 2H), 7.35-7.30 (m, 4H), 7.27-7.23 (m, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 7.02-6.97 (m, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.4 (d, *J* = 18 Hz), 154.2 (d, *J* = 11 Hz), 137.3, 132.9 (d, *J* = 109 Hz), 131.7 (d, *J* = 3 Hz), 131.5 (d, *J* = 10 Hz), 130.5, 130.2, 129.3 (d, *J* = 9 Hz), 129.1, 128.4 (d, *J* = 12 Hz), 127.7, 126.3, 124.8, 123.3, 121.8, 111.1, 106.6 (d, *J* = 116 Hz), 21.1. ³¹P NMR (CDCl₃, 162 MHz): δ 18.23. HRMS *m*/*z* Calcd for C₂₇H₂₁NaO₂P: [M+Na]⁺ = 431.1171. Found: 431.1174.

Diphenyl(2-(*p*-tolyl)benzofuran-3-yl)phosphine oxide **3d** White solid (71.0 mg, 87%), mp: 144-146 \C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.76-7.71 (m, 4H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.43 (td, *J* = 7.6, 1.2 Hz, 2H), 7.34 (td, *J* = 7.6, 2.8 Hz, 4H), 7.25-7.22 (m, 1H), 7.00-6.95 (m, 3H), 6.50 (d, *J* = 8.0 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.6 (d, *J* = 18 Hz), 154.1 (d, *J* = 12 Hz),

140.0, 133.0 (d, J = 109 Hz), 131.7, 131.6 (d, J = 11 Hz), 129.4 (d, J = 10 Hz), 129.3, 128.5 (d, J = 4 Hz), 128.3, 126.5, 124.6, 123.2, 121.7, 111.1, 106.0 (d, J = 117 Hz), 21.3. ³¹P NMR (CDCl₃, 162 MHz): δ 18.79. HRMS *m*/*z* Calcd for C₂₇H₂₁NaO₂P: [M+Na]⁺ = 431.1171. Found: 431.1170.

(2-(4-Methoxyphenyl)benzofuran-3-yl)diphenylphosphine oxide **3e** Pale yellow solid (70.4 mg, 83%), mp: 59-61 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.79-7.72 (m, 6H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.37-7.33 (m, 4H), 7.23 (t, *J* = 7.6 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.44 (d, *J* = 8.0 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5 (d, *J* = 17 Hz), 160.7, 154.0 (d, *J* = 11 Hz), 133.0 (d, *J* = 108 Hz), 131.7 (d, *J* = 2 Hz), 131.6 (d, *J* = 10 Hz), 131.0, 129.5 (d, *J* = 10 Hz), 128.4 (d, *J* = 12 Hz), 124.5, 123.2, 121.8, 121.5, 113.3, 111.0, 105.1 (d, *J* = 116 Hz), 55.2. ³¹P NMR (CDCl₃, 162 MHz): δ 18.90. HRMS *m*/*z* Calcd for C₂₇H₂₁NaO₃P: [M+Na]⁺ = 447.1121. Found: 447.1122.

(2-([1,1'-Biphenyl]-4-yl)benzofuran-3-yl)diphenylphosphine oxide **3f** White solid (82.7 mg, 88%), mp: 202-204 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.87-7.85 (m, 2H), 7.79-7.74 (m, 4H), 7.56 (d, J = 8.4 Hz, 1H), 7.52-7.50 (m, 2H), 7.45-7.40 (m, 6H), 7.37-7.33 (m, 5H), 7.27 (t, J = 8.0 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.0 (d, J = 18 Hz), 154.2 (d, J = 12 Hz), 142.3, 140.1, 132.8 (d, J = 108 Hz), 131.8 (d, J = 3 Hz), 131.6 (d, J = 10 Hz), 129.8, 129.4 (d, J = 10 Hz), 128.7, 128.5 (d, J = 13 Hz), 128.2, 127.7, 127.0, 126.4, 124.9, 123.4, 121.8, 111.2, 106.8 (d, J = 116 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.82. HRMS m/z Calcd for C₃₂H₂₃NaO₂P: [M+Na]⁺ = 493.1328. Found: 493.1326.

(2-(3-Fluorophenyl)benzofuran-3-yl)diphenylphosphine oxide **3g** Pale yellow solid (61.8 mg, 75%), mp: 126-128 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78-7.73 (m, 4H), 7.62 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.53-7.50 (m, 1H), 7.49-7.45 (m, 2H), 7.40-7.35 (m, 4H), 7.31-7.27 (m, 1H), 7.18-7.13 (m, 1H), 7.03-6.99 (m, 1H), 6.94 (td, J = 8.4, 2.0 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.8 (d, $J_{C-F} = 245$ Hz), 161.6 (d, J = 2 Hz), 161.4 (d, J = 2 Hz), 154.2 (d, J = 8.4 Hz, 1H), 7.03-6.99 (m, 2000) δ ppm 161.8 (d, $J_{C-F} = 245$ Hz), 161.6 (d, J = 2 Hz), 161.4 (d, J = 2 Hz), 154.2 (d, J = 8.4 Hz, 2000 Hz, 2000

12 Hz), 132.6 (d, J = 109 Hz), 132.0 (d, J = 3 Hz), 131.6 (d, J = 11 Hz), 131.3 (d, J = 9 Hz), 129.5, 129.4, 129.1 (d, J = 10 Hz), 128.6 (d, J = 12 Hz), 125.4 (d, J = 3 Hz), 125.3, 123.5, 121.9, 116.8, 116.6, 116.3, 116.1, 111.3, 107.8 (d, J = 115 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.48. HRMS m/z Calcd for C₂₆H₁₈FNaO₂P: [M+Na]⁺ = 435.0921. Found: 435.0918.

(2-(3-Clhlorophenyl)benzofuran-3-yl)diphenylphosphine oxide **3h** White solid (58.2 mg, 68%), mp: 162-164 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78-7.73 (m, 5H), 7.72-7.69 (m, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.49-7.45 (m, 2H), 7.40-7.35 (m, 4H), 7.31-7.27 (m, 1H), 7.21-7.19 (m, 1H), 7.11 (t, *J* = 8.0 Hz, 1H), 7.03-6.99 (m, 1H), 6.56 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.3 (d, *J* = 17 Hz), 154.2 (d, *J* = 11 Hz), 133.4 (d, *J* = 70 Hz), 132.0 (d, *J* = 3 Hz), 131.6, 131.5, 130.9, 129.7, 129.2, 129.1, 129.0, 128.5 (d, *J* = 12 Hz), 127.7, 125.3, 123.6, 122.0, 111.3, 108.0 (d, *J* = 115 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.27. HRMS *m*/*z* Calcd for C₂₆H₁₈ClNaO₂P: [M+Na]⁺ = 451.0625. Found: 451.0627.

(2-(4-Fluorophenyl)benzofuran-3-yl)diphenylphosphine oxide **3i** White solid (62.6 mg, 76%), mp: 141-143 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.84-7.81 (m, 2H), 7.77-7.72 (m, 4H), 7.55 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.39-7.35 (m, 4H), 7.29-7.25 (m, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.90 (t, J = 8.4 Hz, 2H), 6.47 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5 (d, $J_{C-F} = 250$ Hz), 162.3 (d, J = 17 Hz), 154.2 (d, J = 12 Hz), 132.7 (d, J = 108 Hz), 131.9 (d, J = 2 Hz), 131.6, 131.6, 131.5, 131.5, 129.2 (d, J = 10 Hz), 128.5 (d, J = 12 Hz), 125.6 (d, J = 4 Hz), 125.0, 123.4, 121.7, 115.1, 114.9, 111.2, 106.8 (d, J = 116 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.59. HRMS *m*/*z* Calcd for C₂₆H₁₈FNaO₂P: [M+Na]⁺ = 435.0921. Found: 435.0920.

(2-(4-Chlorophenyl)benzofuran-3-yl)diphenylphosphine oxide **3j** White solid (71.9 mg, 84%), mp: 159-161 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80-7.71 (m, 6H), 7.55 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.40-7.35 (m, 4H), 7.27 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 8.8 Hz, 2H), 6.99 (t, J = 8.0 Hz, 1H), 6.46 (d, J = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ ppm 162.0 (d, J = 16 Hz), 154.2 (d, J = 12 Hz), 136.0, 132.7 (d, J = 109 Hz), 132.0 (d, J = 2 Hz), 131.6 (d, J = 10 Hz), 130.7, 129.2 (d, J = 11 Hz), 128.5 (d, J = 12 Hz), 128.1, 127.8, 125.1, 123.5, 121.85, 111.2, 107.3 (d, J = 115 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.68. HRMS m/z Calcd for C₂₆H₁₈ClNaO₂P: [M+Na]⁺ = 451.0625. Found: 451.0626.

Diphenyl(2-(4-(trifluoromethyl)phenyl)benzofuran-3-yl)phosphine oxide **3k** White solid (36.0 mg, 39%), mp: 172-174 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 8.4 Hz, 2H), 7.76-7.71 (m, 4H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.51-7.46 (m, 4H), 7.40-7.36 (m, 4H), 7.34-7.30 (m, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.3 (d, *J* = 18 Hz), 154.4 (d, *J* = 11 Hz), 132.8, 132.5 (d, *J* = 109 Hz), 132.1 (d, *J* = 3 Hz), 131.6 (d, *J* = 10 Hz), 131.3 (q, *J*_{C-F} = 32 Hz), 129.8, 129.1 (d, *J* = 10 Hz), 128.6 (d, *J* = 13 Hz), 125.5, 124.7 (q, *J*_{C-F} = 4 Hz), 123.7 (q, *J*_{C-F} = 271 Hz), 123.7, 122.0, 111.4, 108.7 (d, *J* = 113 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.61. HRMS *m*/*z* Calcd for C₂₇H₁₈F₃NaO₂P: [M+Na]⁺ = 485.0889. Found: 485.0888.

3k' and **3k''** White solid (48.8 mg, 51%), ¹H NMR (400 MHz, CDCl₃) δ ppm 7.79-7.74 (m, 3H), 7.56-7.39 (m, 13.6H), 7.25-7.18 (m, 4H), 6.95-6.92 (m, 1H), 6.83-6.80 (m, 1.6H), 3.77 (s, 1.5H), 3.17 (s, 3H). ³¹P NMR (CDCl₃, 162 MHz): δ 30.80, 28.79. HRMS *m*/*z* Calcd for C₂₈H₂₃F₃O₂P: [M+H]⁺ = 479.1382. Found: 479.1378.

(2-(3,5-Dimethylphenyl)benzofuran-3-yl)diphenylphosphine oxide **31** White solid (79.3 mg, 94%), mp: 51-53 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.79-7.73 (m, 4H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.43-7.39 (m, 2H), 7.35-7.30 (m, 6H), 7.27-7.23 (m, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.82 (s, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 2.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5 (d, *J* = 17 Hz), 154.2 (d, *J* = 12 Hz), 137.2, 133.0 (d,

J = 108 Hz), 131.6 (d, J = 3 Hz), 131.5, 131.4, 129.3 (d, J = 9 Hz), 129.0, 128.3 (d, J = 13 Hz), 127.2, 124.7, 123.2, 121.9, 111.0, 106.5 (d, J = 117 Hz), 21.0. ³¹P NMR (CDCl₃, 162 MHz): δ 18.00. HRMS m/z Calcd for C₂₈H₂₃NaO₂P: [M+Na]⁺ = 445.1328. Found: 445.1327.

(2-(4-Fluoro-3-methylphenyl)benzofuran-3-yl)diphenylphosphine oxide **3m** Pale yellow solid (74.1 mg, 87%), mp: 116-118 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78-7.72 (m, 4H), 7.62-7.59 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.47-7.43 (m, 2H), 7.38-7.34 (m, 4H), 7.26 (t, J = 8.0 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 6.86-6.81 (m, 1H), 6.52 (d, J = 8.0 Hz, 1H), 2.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.1 (d, $J_{C-F} = 248$ Hz), 162.5 (d, J = 17 Hz), 154.1 (d, J = 12 Hz), 133.1, 133.0, 132.8 (d, J = 108 Hz), 131.8 (d, J = 2 Hz), 131.5 (d, J = 10 Hz), 129.2 (d, J = 10 Hz), 128.7 (d, J = 9 Hz), 128.4 (d, J = 13 Hz), 125.2, 125.2, 124.9, 124.5, 124.3, 123.4, 121.8, 114.7, 114.5, 111.1, 106.6 (d, J = 115 Hz), 14.3. ³¹P NMR (CDCl₃, 162 MHz): δ 18.21. HRMS m/z Calcd for C₂₇H₂₀FNaO₂P: [M+Na]⁺ = 449.1077. Found: 449.1077.

(2-(Naphthalen-1-yl)benzofuran-3-yl)diphenylphosphine oxide **3n** White solid (53.3 mg, 60%), mp: 189-191 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73-7.65 (m, 3H), 7.59-7.53 (m, 5H), 7.47-7.43 (m, 2H), 7.41 (d, J = 7.2 Hz, 1H), 7.38-7.31 (m, 2H), 7.24-7.13 (m, 4H), 7.10-7.06 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.6 (d, J = 19 Hz), 154.7 (d, J = 12 Hz), 132.9, 132.2 (d, J = 109 Hz), 131.8, 131.7 (d, J = 12 Hz), 131.4 (d, J = 3 Hz), 131.3 (d, J = 10 Hz), 130.3 (d, J = 11 Hz), 128.8 (d, J = 9 Hz), 128.0, 127.9 (d, J = 12 Hz), 126.8, 126.7, 126.0, 125.4, 125.3, 124.4, 123.7, 122.4, 111.3, 110.4 (d, J = 117 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.35. HRMS m/z Calcd for C₃₀H₂₁NaO₂P: [M+Na]⁺ = 467.1171. Found: 467.1171.

Diphenyl(2-(thiophen-2-yl)benzofuran-3-yl)phosphine oxide **30** Yellow solid (69.6 mg, 87%), mp: 151-153 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.03 (d, J = 7.6 Hz, 1H), 7.78-7.73 (m, 4H), 7.54-7.50 (m, 3H), 7.44-7.40 (m, 4H), 7.34 (d, J = 8.8 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 6.96-6.89 (m, 2H), 6.25 (d, J = 8.0 Hz, 1H). ¹³C NMR

(100 MHz, CDCl₃) δ ppm 157.8 (d, J = 17 Hz), 153.7 (d, J = 12 Hz), 132.6 (d, J = 109 Hz), 132.1 (d, J = 3 Hz), 131.9, 131.7 (d, J = 11 Hz), 130.8, 129.3 (d, J = 11 Hz), 129.0, 128.6 (d, J = 12 Hz), 127.9, 124.8, 123.5, 121.2, 111.0, 105.2 (d, J = 116 Hz), 14.3. ³¹P NMR (CDCl₃, 162 MHz): δ 20.02. HRMS *m*/*z* Calcd for C₂₄H₁₇NaO₂PS: [M+Na]⁺ = 423.0579. Found: 423.0577.

(E)-(1-(2-methoxyphenyl)-3,3-dimethylbut-1-en-2-yl)diphenylphosphine oxide **3p** White solid (74.1 mg, 95%), mp: 112-114 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.84-7.79 (m, 4H), 7.51-7.43 (m, 6H), 7.23 (t, J = 8.0 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 6.89 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.66 (d, J = 27.2 Hz, 1H), 3.85 (s, 3H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.4, 144.7 (d, J = 88 Hz), 141.4 (d, J = 16 Hz), 134.6 (d, J = 100 Hz), 131.8 (d, J = 9 Hz), 131.2 (d, J = 3 Hz), 128.8, 128.5, 128.3 (d, J = 12 Hz), 128.0, 119.9, 110.0, 55.3, 38.5, 31.5. ³¹P NMR (CDCl₃, 162 MHz): δ 39.77. HRMS *m*/*z* Calcd for C₂₅H₂₇NaO₂P: [M+Na]⁺ = 413.1641. Found: 413.1640.

(E)-(1-(2-methoxyphenyl)-3,3-dimethylbut-1-en-2-yl-1-d)diphenylphosphine oxide **3p-D** White solid (64.1 mg, 82%), mp: 118-120 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.84-7.79 (m, 4H), 7.51-7.43 (m, 6H), 7.25-7.21 (m, 1H), 7.08-7.05 (m, 1H), 6.89 (t, J = 7.2 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 3.85 (s, 3H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.4, 144.6 (d, J = 87 Hz), 134.6 (d, J = 100 Hz), 131.8 (d, J = 9 Hz), 131.2 (d, J = 2 Hz), 128.9 (d, J = 2 Hz), 128.5, 128.2 (d, J = 12 Hz), 128.1, 127.9, 119.9, 110.0, 55.3, 38.4 (d, J = 10 Hz), 31.5 (d, J = 4 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 39.64. HRMS m/z Calcd for C₂₅H₂₆DNaO₂P: [M+Na]⁺ = 414.1704. Found: 414.1707.

(2-Butylbenzofuran-3-yl)diphenylphosphine oxide **3q** Pale yellow oil (13.5 mg, 18%), mp: 112-114 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.76-7.71 (m, 4H), 7.57-7.55 (m, 2H), 7.49-7.45 (m, 5H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 2.94 (t, *J* = 7.6 Hz, 1H), 1.68-1.60 (m, 2H), 1.68-1.60 (m, 2H), 1.28-1.19

(m, 2H), 0.82 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 168.5 (d, J = 19 Hz), 154.1 (d, J = 9 Hz), 133.3 (d, J = 109 Hz), 132.1 (d, J = 3 Hz), 131.7 (d, J = 10 Hz), 128.6 (d, J = 12 Hz), 124.0, 123.2, 120.9, 110.9, 105.5 (d, J = 120 Hz), 30.4, 27.9, 22.3, 13.7. ³¹P NMR (CDCl₃, 162 MHz): δ 21.20. HRMS m/z Calcd for C₂₄H₂₃NaO₂P: [M+Na]⁺ = 397.1328. Found: 397.1330.

(E)-(1-(2-methoxyphenyl)hex-1-en-1-yl)diphenylphosphine oxide **3q'** White solid (49.1 mg, 63%), mp: 111-113 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.83-7.78 (m, 4H), 7.55-7.51 (m, 2H), 7.50-7.45 (m, 4H), 7.29 (t, J = 6.8 Hz, 2H), 7.08 (d, J = 22.8 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 3.77 (s, 3H), 2.52-2.43 (m, 2H), 1.38-1.34 (m, 2H), 1.19-1.09 (m, 2H), 0.69 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 157.03, 139.4 (d, J = 14 Hz), 135.6 (d, J = 95 Hz), 132.3 (d, J = 101 Hz), 132.1 (d, J = 9 Hz), 131.6 (d, J = 3 Hz), 129.5, 128.9 (d, J = 1 Hz), 128.3 (d, J = 12 Hz), 125.0 (d, J = 20 Hz), 120.1, 110.5, 55.4, 31.5 (d, J = 1 Hz), 28.4 (d, J = 10 Hz), 22.7, 13.5. ³¹P NMR (CDCl₃, 162 MHz): δ 34.49. HRMS *m*/*z* Calcd for C₂₅H₂₇NaO₂P: [M+Na]⁺ = 413.1641. Found: 413.1640.

(5-Methyl-2-phenylbenzofuran-3-yl)diphenylphosphine oxide **3r** White solid (76.7 mg, 94%), mp: 130-132 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.76-7.71 (m, 6H), 7.45-7.40 (m, 3H), 7.35-7.31 (m, 4H), 7.22-7.13 (m, 3H), 7.07 (d, J = 8.4 Hz, 1H), 6.34 (s, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.1 (d, J = 18 Hz), 152.6 (d, J = 11 Hz), 132.8 (d, J = 109 Hz), 132.7, 131.7 (d, J = 3 Hz), 131.6 (d, J = 10 Hz), 129.6, 129.4, 129.4 (d, J = 10 Hz), 129.3, 128.3 (d, J = 13 Hz), 127.7, 126.1, 121.7, 110.5, 106.3 (d, J = 116 Hz), 21.3. ³¹P NMR (CDCl₃, 162 MHz): δ 19.14. HRMS m/z Calcd for C₂₇H₂₁NaO₂P: [M+Na]⁺ = 431.1171. Found: 431.1173.

(5-Chloro-2-phenylbenzofuran-3-yl)diphenylphosphine oxide **3s** White solid (81.3 mg, 95%), mp: 188-190 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75-7.70 (m, 6H), 7.48-7.44 (m, 3H), 7.38-7.34 (m, 4H), 7.25-7.16 (m, 4H), 6.45 (d, J = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.3 (d, J = 17 Hz), 152.5 (d, J = 12 Hz), 132.3 (d, J = 109 Hz), 132.0 (d, J = 2 Hz), 131.6 (d, J = 10 Hz), 131.5 (d, J = 10 Hz), 130.7 (d, J = 10 Hz), 130.0, 129.3, 128.9 (d, J = 15 Hz), 128.5 (d, J = 13 Hz), 127.8, 125.1, 121.5, 112.0, 106.7 (d, J = 114 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.51. HRMS *m/z* Calcd for C₂₆H₁₈ClNaO₂P: [M+Na]⁺ = 451.0625. Found: 451.0627.

(6-Methyl-2-phenylbenzofuran-3-yl)diphenylphosphine oxide **3t** Yellow solid (60.4 mg, 74%), mp: 60-62 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.77-7.71 (m, 6H), 7.45-7.41 (m, 2H), 7.36-7.31 (m, 5H), 7.24-7.15 (m, 3H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.37 (d, *J* = 8.4 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.7 (d, *J* = 18 Hz), 154.6 (d, *J* = 12 Hz), 135.3, 132.8 (d, *J* = 109 Hz), 131.7 (d, *J* = 3 Hz), 131.6 (d, *J* = 10 Hz), 129.6, 129.4, 129.3, 128.4 (d, *J* = 13 Hz), 127.7, 126.8 (d, *J* = 11 Hz), 124.8, 121.2, 111.3, 106.4 (d, *J* = 116 Hz), 21.5. ³¹P NMR (CDCl₃, 162 MHz): δ 18.87. HRMS *m*/*z* Calcd for C₂₇H₂₁NaO₂P: [M+Na]⁺ = 431.1171. Found: 431.1170.

(7-Chloro-2-phenylbenzofuran-3-yl)diphenylphosphine oxide **3u** White solid (83.9 mg, 98%), mp: 70-72 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.77-7.70 (m, 6H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37-7.32 (m, 4H), 7.28-7.23 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 2H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.48 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.8 (d, *J* = 17 Hz), 150.1 (d, *J* = 11 Hz), 132.3 (d, *J* = 109 Hz), 131.9 (d, *J* = 3 Hz), 131.5 (d, *J* = 10 Hz), 130.9 (d, *J* = 9 Hz), 130.1, 129.5, 128.7, 128.5 (d, *J* = 13 Hz), 127.8, 125.0, 124.2, 120.3, 116.7, 107.5 (d, *J* = 115 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.50. HRMS *m*/*z* Calcd for C₂₆H₁₈ClNaO₂P: [M+Na]⁺ = 451.0625. Found: 451.0628.

(2-Phenylbenzofuran-3-yl)di-p-tolylphosphine oxide **3v** White solid (72.6 mg, 86%), mp: 157-159 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.77-7.75 (m, 2H), 7.63-7.58 (m, 4H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.27-7.18 (m, 4H), 7.17-7.12 (m, 4H), 7.01 (t, *J* = 8.0

Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 2.32 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.0 (d, J = 17 Hz), 154.2 (d, J = 11 Hz), 142.1 (d, J = 13 Hz), 131.6, 131.5, 129.9 (d, J = 111 Hz), 129.5, 129.4, 129.2, 129.1, 127.7, 124.8, 123.3, 122.0, 111.1, 107.2 (d, J = 115 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 19.11. HRMS m/z Calcd for C₂₈H₂₃NaO₂P: [M+Na]⁺ = 445.1328. Found: 445.1327.

Bis(4-fluorophenyl)(2-phenylbenzofuran-3-yl)phosphine oxide **3w** White solid (73.1 mg, 85%), mp: 64-66 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75-7.69 (m, 6H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.32-7.26 (m, 2H), 7.20 (t, *J* = 7.6 Hz, 2H), 7.07-7.01 (m, 5H), 6.62 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.9 (dd, *J*_{C-F} = 253 Hz, *J*_{C-P} = 4 Hz), 163.4 (d, *J* = 18 Hz), 154.3 (d, *J* = 12 Hz), 134.1, 134.0 (d, *J* = 3 Hz), 133.9, 130.0, 129.4, 129.2 (d, *J* = 3 Hz), 129.1, 129.0 (d, *J* = 10 Hz), 128.1 (d, *J* = 4 Hz), 127.9, 125.1, 123.6, 121.6, 116.0 (d, *J*_{C-F} = 21 Hz), 115.8 (d, *J*_{C-F} = 21 Hz), 111.3, 106.4 (d, *J* = 118 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 16.96. HRMS *m*/*z* Calcd for C₂₆H₁₇F₂NaO₂P: [M+Na]⁺ = 453.0826. Found: 453.0826.

Bis(4-chlorophenyl)(2-phenylbenzofuran-3-yl)phosphine oxide **3x** Pale yellow solid (87.0 mg, 94%), mp: 73-75 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.69-7.61 (m, 6H), 7.57 (d, J = 8.4 Hz, 1H), 7.33-7.27 (m, 6H), 7.20 (t, J = 7.6 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.6 (d, J = 18 Hz), 154.3 (d, J = 12 Hz), 138.6 (d, J = 4 Hz), 132.8 (d, J = 11 Hz), 131.1 (d, J = 111 Hz), 130.0, 129.4, 129.0, 128.9 (d, J = 13 Hz), 128.8, 127.9, 125.2, 123.6, 121.6, 111.4, 105.9 (d, J = 119 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 16.93. HRMS *m*/*z* Calcd for C₂₆H₁₇Cl₂NaO₂P: [M+Na]⁺ = 485.0235. Found: 485.0237.

Di([1,1'-biphenyl]-4-yl)(2-phenylbenzofuran-3-yl)phosphine oxide **3y** White solid (68.8 mg, 63%), mp: 102-104 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.85-7.80 (m, 4H), 7.74-7.72 (m, 2H), 7.58-7.54 (m, 9H), 7.45-7.42 (m, 4H), 7.39-7.35 (m, 2H), 7.31-7.27 (m, 1H), 7.22-7.15 (m, 3H), 7.05 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.2 (d, J = 18 Hz), 154.3 (d, J = 12 Hz), 144.5 (d, J = 3 Hz), 139.8, 132.1 (d, J = 11 Hz), 131.4 (d, J = 110 Hz), 129.7, 129.5, 129.4, 129.3, 128.7, 128.1, 127.8, 127.2, 127.1, 127.1, 125.0, 123.5, 122.1, 111.2, 107.0 (d, J = 117 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.45. HRMS *m*/*z* Calcd for C₃₈H₂₇NaO₂P: [M+Na]⁺ = 569.1641. Found: 569.1642.

Di(naphthalen-2-yl)(2-phenylbenzofuran-3-yl)phosphine oxide **3z** Pale yellow solid (77.1 mg, 78%), mp: 98-100 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.48 (d, J = 14.4 Hz, 2H), 7.83 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 6.8 Hz, 4H), 7.74-7.71 (m, 2H), 7.68-7.63 (m, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.54-7.47 (m, 4H), 7.27-7.23 (m, 1H), 7.03-7.00 (m, 3H), 6.92 (t, J = 7.6 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5 (d, J = 17 Hz), 154.3 (d, J = 12 Hz), 134.5 (d, J = 2 Hz), 133.6 (d, J = 9 Hz), 132.4 (d, J = 14 Hz), 130.0 (d, J = 109 Hz), 129.7, 129.5, 129.3, 129.2 (d, J = 2 Hz), 128.8, 128.3 (d, J = 12Hz), 128.1, 127.7, 127.6, 126.7, 126.3 (d, J = 12 Hz), 124.9, 123.4, 122.0, 111.2, 106.6 (d, J = 117 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 18.46. HRMS *m*/*z* Calcd for C₃₄H₂₃NaO₂P: [M+Na]⁺ = 517.1328. Found: 517.1330.

6-(2-Phenylbenzofuran-3-yl)dibenzo[*c*,*e*][1,2]oxaphosphinine 6-oxide **3aa** Pale yellow solid (47.3 mg, 58%), mp: 68-70 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.98-7.93 (m, 2H), 7.85-7.83 (m, 2H), 7.68-7.53 (m, 4H), 7.38-7.28 (m, 6H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5 (d, *J* = 23 Hz), 154.1 (d, *J* = 14 Hz), 148.8 (d, *J* = 8 Hz), 135.3 (d, *J* = 6 Hz), 133.0 (d, *J* = 3 Hz), 130.5, 130.3, 129.9 (d, *J* = 96 Hz), 129.2, 129.1, 128.2 (d, *J* = 15 Hz), 128.0, 126.3, 125.3, 125.0, 124.9, 124.6, 123.9, 123.6 (d, *J* = 10 Hz), 122.0, 121.9, 120.6 (d, *J* = 6 Hz), 111.1, 104.0 (d, *J* = 165 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 17.81. HRMS *m*/*z* Calcd for C₂₆H₁₇NaO₃P: [M+Na]⁺ = 431.0808. Found:

431.0808.

Diphenyl(2-phenylbenzo[*b*]thiophen-3-yl)phosphine oxide **3ab** White solid (45.1 mg, 55%), mp: 190-192 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.57-7.52 (m, 4H), 7.35-7.30 (m, 3H), 7.24-7.20 (m, 5H), 7.14-7.12 (m, 2H), 7.08-7.05 (m, 1H), 6.96 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 154.8 (d, *J* = 13 Hz), 141.3 (d, *J* = 13 Hz), 139.3 (d, *J* = 13 Hz), 133.3 (d, *J* = 106 Hz), 132.7, 131.5 (d, *J* = 10 Hz), 131.4 (d, *J* = 3 Hz), 129.8, 128.3, 128.2 (d, *J* = 12 Hz), 127.5, 125.8, 124.8, 124.8, 122.6 (d, *J* = 104 Hz), 121.4. ³¹P NMR (CDCl₃, 162 MHz): δ 21.72. HRMS *m*/*z* Calcd for C₂₆H₁₉NaOPS: [M+Na]⁺ = 433.0786. Found: 433.0784.

Diphenyl(2-(*p*-tolyl)benzo[*b*]thiophen-3-yl)phosphine oxide **3ac** White solid (40.7 mg, 48%), mp: 198-120 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.56-7.51 (m, 4H), 7.37-7.30 (m, 3H), 7.24-7.20 (m, 5H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 8.0 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.1 (d, *J* = 13 Hz), 141.4 (d, *J* = 13 Hz), 139.3 (d, *J* = 12 Hz), 138.3, 133.5 (d, *J* = 106 Hz), 131.6 (d, *J* = 10 Hz), 131.1 (d, *J* = 7 Hz), 129.8 (d, *J* = 2 Hz), 129.7, 128.2, 128.1, 128.1, 125.8, 124.7 (d, *J* = 9 Hz), 122.6 (d, *J* = 103 Hz), 121.4, 21.1. ³¹P NMR (CDCl₃, 162 MHz): δ 21.80. HRMS *m*/*z* Calcd for C₂₇H₂₁NaOPS: [M+Na]⁺ = 447.0943. Found: 447.0946.

(2-(4-Chlorophenyl)benzo[*b*]thiophen-3-yl)diphenylphosphine oxide **3ad** White solid (45.3 mg, 51%), mp: 229-231 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.88 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.56-7.51 (m, 4H), 7.42-7.38 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.28-7.24 (m, 5H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 153.1 (d, *J* = 13 Hz), 141.2 (d, *J* = 12 Hz), 139.3 (d, *J* = 12 Hz), 134.7, 133.2 (d, *J* = 106 Hz), 131.6 (d, *J* = 10 Hz), 131.5 (d, *J* = 3 Hz), 131.3 (d, *J* = 3 Hz), 131.1, 128.4, 128.3, 127.6, 125.9, 125.0 (d, *J* = 3 Hz), 123.7 (d, *J* = 103 Hz), 121.5. ³¹P NMR (CDCl₃, 162 MHz): δ 21.41. HRMS *m*/*z* Calcd for C₂₆H₁₈ClNaOPS: [M+Na]⁺ = 467.0397. Found: 467.0396.

Synthesis and Characterization Data of 4a

Diphenyl(2-phenylbenzofuran-3-yl)phosphane 4a. The compound 3a (0.2 mmol) was placed with a magnetic stir bar in a schlenk tube under an argon atmosphere. Then, toluene (1 mL) and HSiCl₃ (2.0 equiv) were then added by a syringe. The resulting solution was stirred at 80 % for 12 h. After cooling, the resulting solution was quenched slowly by addition of 10% aq. NaOH (5 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc = 20/1) to give 4a in 64% yield. White solid (48.4 mg, 64%), mp: 84-86 $^{\circ}$ C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.99 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.48-7.40 (m, 7H), 7.32-7.30 (m, 6H), 7.24-7.20 (m,1H), 6.91 (t, J = 7.6 Hz, 1H), 6.69 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.1 (d, J = 40 Hz), 154.8 (d, J = 3 Hz), 135.9 (d, J= 8 Hz), 132.6 (d, *J* = 18 Hz), 130.7 (d, *J* = 5 Hz), 130.3, 129.4, 129.0 (d, *J* = 10 Hz), 128.5 (d, J = 8 Hz), 128.4, 128.3, 124.4, 122.7, 122.5, 111.3, 107.7 (d, J = 16 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ -28.96. HRMS m/z Calcd for C₂₆H₂₀OP: [M+H]⁺ = 379.1246. Found: 379.1246.

Synthesis and Characterization Data of 5

[RuCl₂(p-cymene)(2-phenylbenzofuran-3-yldiphenylphosphine)] **5**. To a solution of [RuCl₂(p-cymene)]₂ (0.1 mmol) in CH₂Cl₂ (1 mL) was added phosphine **4a** (0.15 mmol). The reaction was stirred for 6 h at room temperature. Then, the solvent was concentrated in vacuo and the residue was washed with ethyl ether to afford complex **5** (62.0 mg, 85% yield) as a red solid. mp: 206-208 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.72-7.68 (m, 4H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.39-7.34 (m, 2H), 7.19-7.12 (m, 4H), 7.10-7.03 (m, 6H), 5.45 (d, *J* = 6.4 Hz, 2H), 5.20 (d, *J* = 5.0 Hz, 2H), 2.89-7.2.80 (m, 1H), 1.93 (m, 3H), 1.10 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.5 (d, *J* = 8 Hz), 153.8 (d, *J* = 10 Hz), 134.9 (d, *J* = 10 Hz), 130.3 (d, *J* = 11 Hz), 130.1 (d, *J* = 3 Hz), 129.5, 129.4, 128.8, 127.6, 127.2 (d, *J* = 10 Hz), 125.4, 124.1, 123.1, 111.1, 108.8 (d, *J* = 46 Hz), 108.8 (d, *J* = 2 Hz), 98.3,

88.0, 87.5 (d, J = 4 Hz), 80.8 (d, J = 78 Hz), 30.0, 21.9, 17.8.³¹P NMR (CDCl₃, 162 MHz): δ 10.35. HRMS *m*/*z* Calcd for C₃₆H₃₃ClOPRu: [M-Cl]⁺ = 649.0996. Found: 649.1004.

Synthesis and Characterization Data of 6

Dichlorobis(2-phenylbenzofuran-3-yldiphenylphosphine)palladium(II) **6**. To a soluton of PdCl₂ (0.4 mmol) in MeOH (4 mL) was added NaCl (0.8 mmol) and the reaction was stirred at room temperature overnight to form a dark red solution. Then, the phosphine **4a** was added into the dark red solution and the reaction was heated reflux for 4 h to produce yellow precipitation. After cooling, the mixture was filtered and the solid was washed with diethyl ether for three times to afford yield solid complex **6** (272.4 mg) in 73% yield. mp: 231-233 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.69-7.66 (m, 4H), 7.57-7.53 (m, 10H), 7.33-7.28 (m, 6H), 7.15 (t, *J* = 7.6 Hz, 8H), 7.09-7.05 (m, 8H), 6.94 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.4 (t, *J* = 8 Hz), 154.1 (t, *J* = 5 Hz), 135.3 (t, *J* = 6 Hz), 130.6, 130.5, 130.0 (t, *J* = 41 Hz), 129.2, 128.2 (t, *J* = 26 Hz), 127.8, 127.6 (t, *J* = 6 Hz), 124.7, 123.1, 122.5, 111.1, 103.0 (t, *J* = 28 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 2.73. HRMS *m*/*z* Calcd for C₅₂H₃₈ClO₂P₂Pd: [M-Cl]⁺ = 897.1065. Found: 897.1069.

Synthesis and Characterization Data of 7

1-Methoxy-4-(phenylethynyl)benzene **7**. The compound **7** was synthised from 1-ethynyl-4-methoxybenzene (1 mmol) and iodobenzene (1.5 mmol) by the use of Pd-catalyst **6** through Sonagashira coupling. White solid (183.0 mg, 88%), mp: 54-56 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52-7.49 (m, 2H), 7.47-7.45 (m, 2H), 7.33-7.28 (m, 3H), 6.85 (d, *J* = 8.8 Hz, 2H), 3.78 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.5, 133.0, 131.4, 128.3, 127.9, 123.5, 115.3, 113.9, 89.4, 88.0, 55.2. HRMS *m*/*z* Calcd for C₁₅H₁₃O: [M+H]⁺ = 209.0961. Found: 209.0959.

structure of 3a, CCDC: 1960259

Datablock

Bond precisi	on: $C-C =$	0.0029 A	Wavelength=0.710)73
Cel1:	a=16.620(3)	b=8.0600(16)	c=16.710(3)	
	alpha=90	beta=106.98(3)	gamma=90	
Temperature:	293 K			
	Calcula	ted	Reported	
Volume	2140.8(8)	2140.8(8)	
Space group	P 21/n		P 1 21/n 1	
Hall group	-P 2yn		-P 2yn	
Moiety formu	la C26 H19	02 P, H2 O	C26 H19 O2 P, H	H2 0
Sum formula	C26 H21	03 P	C26 H21 O3 P	
Mr	412.40		412.40	
Dx,g cm-3	1.280		1.279	
Ζ	4		4	
Mu (mm-1)	0.153		0.153	
F000	864.0		864.0	
F000'	864.78			
h,k,lmax	21, 10, 2	1	21, 10, 21	
Nref	4948		4916	
Tmin,Tmax	0.962,0	. 983	0.675,0.733	
Tmin'	0.961			
Correction m	ethod= <mark>#</mark> Report	ed T Limits: Tmi	n=0.675 Tmax=0.733	
AbsCorr = MU	LTI-SCAN			
Data complet	eness= 0.994	Theta(max)	= 27.542	
R(reflection	(s) = 0.0458(39)	41) wR2(ref	flections)= 0.1256(4916)
S = 1.048	Npar	= 281		

structure of **3p**, **CCDC**: **1978107**

As shown in the Figure 1, the benzene ring (C2-C7) and the atoms on the benzene ring (C1, O2, and C8) are disordered into two positions.

In the Figure 2, the disordered component is omitted for clarity.

Datablock:

Bond precisi	ion: C-C	= 0.0028 A	Wavelength=1.54184
Cel1:	a=10. 4061 (2)	b=10.0093(2)	c=20.3835(4)
	alpha=90	beta=90.910(2) gamma=90
Temperature:	100 K		
	Calcul	lated	Reported
Volume	2122.8	33(7)	2122.83(7)
Space group	P 21/0	2	P 1 21/c 1
Hall group	-P 2ył	DC	-P 2ybc
Moiety form	ıla C25 H2	27 02 P	C25 H27 O2 P
Sum formula	C25 H2	27 02 P	C25 H27 O2 P
Mr	390.44	1	390. 43
Dx,g cm-3	1.222		1.222
Ζ	4		4
Mu (mm-1)	1.272		1.272
F000	832.0		832.0
F000'	835.30)	
h,k,lmax	12, 11,	23	12, 11, 23
Nref	3595		3521
Tmin,Tmax	0.795,	0.881	0.869,1.000
Tmin'	0.795		
Correction m AbsCorr = MU	ethod= # Repo: JLTI-SCAN	rted T Limits: Tm	in=0.869 Tmax=1.000
Data complet	eness= 0.979	Theta(max)= 64.830
R(reflection	(ns) = 0.0502(3079) wR2(re	flections)= 0.1344(3521)
S = 1.030	Npa	ar= 328	

structure of 3ab, CCDC: 1960412

Datablock

Bond precisi	on: $C-C = 0$.	.0033 A	Wavelength=0.71073
Cel1:	a=9.6323(13) ł	o=13.6973(19)	c=15.454(2)
	alpha=90 k	oeta=93.272(4)	gamma=90
Temperature:	293 K		
	Calculate	d	Reported
Volume	2035.6(5)		2035.6(5)
Space group	P 21/n		P 1 21/n 1
Hall group	-P 2yn		-P 2yn
Moiety formu	la C26 H19 O	P S	C26 H19 O P S
Sum formula	C26 H19 0	P S	C26 H19 O P S
Mr	410.44		410.44
Dx,g cm-3	1.339		1.339
Ζ	4		4
Mu (mm-1)	0.253		0.253
F000	856.0		856.0
F000'	857.20		
h,k,lmax	12, 17, 20		12, 17, 20
Nref	4776		4739
Tmin,Tmax	0.939,0.9	51	0.528,0.746
Tmin'	0.939		
Correction m AbsCorr = MU	ethod= # Reported ULTI-SCAN	l T Limits: Tmin	=0.528 Tmax=0.746
Data complet	eness= 0.992	Theta(max)=	= 27.722
R(reflection	(s) = 0.0500(3583)	8) wR2(ref]	lections)= 0.1405(4739)
S = 1.017	Npar=	262	

structure of complex 5, CCDC: 1960413

Datablock

Bond precisio	on: $C-C = 0.0058$ A	Wavelength=1.54184
Cell:	a=11.0690(6) $b=11.1524(5)$) c=13.6440(4)
i	alpha=94.062(3) beta=94.936	(3) gamma=116.856(5)
Temperature:	100 K	
	Calculated	Reported
Volume	1485.62(13)	1485. 62 (13)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formul	a C36 H33 C12 O P Ru	C36 H33 C12 O P Ru
Sum formula	C36 H33 C12 O P Ru	C36 H33 C12 O P Ru
Mr	684.56	684.56
Dx,g cm-3	1.530	1.530
Ζ	2	2
Mu (mm-1)	6.653	6.653
F000	700.0	700.0
F000'	703.57	
h,k,lmax	12, 12, 15	12, 12, 15
Nref	4733	4730
Tmin, Tmax	0. 554, 0. 717	0.672,1.000
Tmin'	0.490	
Correction me AbsCorr = MUL	thod=	Smin=0.672 Tmax=1.000
Data complete	eness= 0.999 Theta(ma	ax) = 62.500
R(reflections	wR2(n = 0.0366(4465))	ceflections)= 0.0959(4730)
S = 1.060	Npar= 373	

100 80 60 40 20 0 –20 –40 –60 –80 –100 –120 –140 –160 ppm

000.0

28.79

S41

____20.02

-

The COSY spectrum correlations from $\delta_{\rm H}$ 1.18 (s, 9H) to $\delta_{\rm H}$ 3.85 (s, 3H) confirms that the tert-butyl group is on the same side with methoxy group. Moreover, spectrum correlations from $\delta_{\rm H}$ 1.18 (m, 9H) to 7.84-7.79 (m, 4H), from $\delta_{\rm H}$ 1.18 (m, 9H) to 7.51-7.43 (m, 6H) confirms that the tert-butyl group is attached to the same carbon with the diphenyl phosphoxide group. Thus, we determine the structure of **3p** through COSY spectrum.

According to the literatures by Miura,¹⁷ Breslow¹⁹ and the crystal structure of **3p**, the phosphine oxide group is on the same side as alkenyl hydrogen in the hydrophosphinylated products. Thus, the phosphine oxide group is on the same side as alkenyl hydrogen of product **3q**'.

According to the COSY spectrum, the $\delta_{\rm H}$ 2.52-2.43 (m, 2H) (H-2) has no connection with hydrogen of phosphine oxide group at positions 1 and 2. The results confirm that the n-butyl group is neither on the same side nor attached to the same carbon with phosphine oxide group. Meanwhile, the (H-2) has a connection with the $\delta_{\rm H}$ 6.95 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H) of Ar1 at positions 4 and 5. The results confirm that the n-butyl group is indeed on the same side with aromatic ring 1 and the phosphine oxide group is on the same side with alkenyl hydrogen, which is in accord with reported work. The $\delta_{\rm H}$ 7.08 (d, J = 22.8 Hz, 1H) (H-1) has a strong connection with $\delta_{\rm H}$ 2.52-2.43 (m, 2H) (H-2) at position 3 and the (H-1) has no connection with (H-3) at position 6. The results confirm that the (H-1) is attached to the same carbon as the n-butyl group. Thus, we determined the structure of **3q**' through COSY spectrum and reported work.

100 80 60 40 20 0 –20 –40 –60 –80 –100 –120 –140 –160 ppm

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 ppm

000.000

000.000

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 ppm

S77