Supplementary Material (ESI)

Post annealing induced manipulation of phase and upconversion luminescence of Cr³⁺ doped NaYF₄:Yb,Er crystals[†]

Shivanand H. Nannuri,^a Suresh D. Kulkarni,^{a,b} Subash C.K.,^c Santhosh Chidangil,^{a,d} and Sajan D. George,^{a,b}

^aDepartment of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India - 576104

^bCentre for Applied Nanosciences, , Manipal Academy of Higher Education, Manipal, Karnataka, India – 576104 ^cSchool of Nanoscience and Technology, National Institute of Technology, Calicut, India – 673 601 ^dCentre for Biophotonics, Manipal Academy of Higher Education, Manipal, Karnataka, India - 576104

Contents

- Experimental setup for emission collection
- FESEM Images
- Summarized pseudo phase diagram (T vs mol% Cr)
- Emission spectra of Cr³⁺ doped NaYF₄:Yb, Er annealed at different temperatures
- Laser power density dependent emission spectra of all samples.

Fig.S1. Fiber coupled excitation-collection laser (980 nm) based experimental setup.

Fig.S2. FESEM images of the NaYF:Yb³⁺/Er³⁺ crystals codoped with different amount of Cr^{3+} ions annealed at 600 °C : (a) 0 mol%, (b) 5 mol%, (c)10 mol%, (d)15 mol%, (e) 20 mol%.

Fig.S3. Summarized pseudo phase diagram (T vs mol% Cr)

Fig.S3 Show the summarized pseudo phase diagram obtained from the XRD data. Here α refers to the pure cubic phase, β refers to pure hexagonal phase, (α + β) and (β + α) refers to cubic phase dominant mixed phase and hexagonal phase dominant mixed phase respectively.

Fig.S4. Emission spectra of the NaYF₄:Yb³⁺/Er³⁺ crystals codoped with different amount of Cr³⁺ ions annealed at different temperature: (a) 5 mol%, (b) 10 mol%, (c) 15 mol%, (d) 20 mol%.

Fig.S5. Laser power dependence emission spectra of NaYF₄:Yb³⁺/Er³⁺ crystals annealed at different temperature: (a) 200°C, (b) 400°C, (C) 600°C.

Fig.S6. Laser power dependence emission spectra of 5 mol% Cr³⁺ doped NaYF₄:Yb³⁺/Er³⁺ microcrystals annealed at different temperature: (a) 200°C, (b) 400°C, (C) 600°C.

Fig.S7. Laser power dependence emission spectra of 10 mol% Cr³⁺ doped NaYF₄:Yb³⁺/Er³⁺ crystals annealed at different temperature: (a) 200°C, (b) 400°C, (C) 600°C.

Fig.S8. Laser power dependence emission spectra of 15 mol% Cr³⁺ doped NaYF₄:Yb³⁺/Er³⁺ crystals annealed at different temperature: (a) 200°C, (b) 400°C, (C) 600°C

Fig.S9. Laser power dependence emission spectra of 20 mol% Cr³⁺ doped NaYF₄:Yb³⁺/Er³⁺ crystals annealed at different temperature: (a) 200°C, (b) 400°C, (C) 600°C.