Supporting Information

Asymmetric Synthesis of Multifunctional Aryl Allyl Ethers

by Nucleophilic Catalysis

Shuai Zhao, Lei Jin, Zhi-Li Chen, Xue Rui, Jia-Yi He, Ran Xia, Ke Chen, Xiang-Xiang Chen, Zi-Jian Yin and Xin Chen*

School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, P. R. China. <u>xinchen@cczu.edu.cn</u>

Contents

1. General information
2. Optimization of the solvent of the asymmetric allylic substitution reactionS2
3. General procedure of the asymmetric allylic substitution reactions and
analytical data of the productsS3
4. Synthesis and characterization of MBH carbonate 5a
5. General procedure of asymmetric allylic substitution reaction of 5a
6. Synthesis and characterization of chiral MBH alcohol 6
7. General procedure of 1, 3-dipolar cycloaddition reaction of aryl allyl ether 4a
8. ¹ H NMR and ¹³ C NMR spectra of 4, 5, 6, 7
9. Chiral HPLC chromatograms of 4, 5, 6, 7

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (160-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded using Bruker AV-300 / AV-400 spectrometers. Chemical shifts are given in δ relative to tetramethylsilane (TMS), Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. The spectra were recorded in CDCl₃ as the solvent at room temperature, TMS served as internal standard $(\delta = 0 \text{ ppm})$ for ¹H NMR and CDCl₃ used as an internal standard ($\delta = 77.00 \text{ ppm}$) for ¹³C NMR. Optical rotations were measured on an Autopol IV (d = 589 nm, Hg lamp, 50mmcell) instrument (Rudolph, NJ, USA). High resolution mass spectra were acquired on Thermo Orbitrap Elite, instrument (Agilent, Palo Alto, CA, USA). Enantiomeric excess values were determined by HPLC with Chiralcel OD-H, IC, ID, IB columns on Agilent LC-1260 eluting with *i*-PrOH and n-hexane.

2. Optimization of the solvent of the asymmetric allylic substitution

reaction	l
	•

OH + 2a	OBoc CO ₂ Me 3a	1h (20 r solve rt	ent	CO₂Me 4a
Entry ^a	Solvent	t (h)	Yield ^b (%)	Ee ^c (%)
1	DCM	84	92	77
2	PhMe	120	93	85
3	EA	72	92	87

4	1,4-dioxane	96	95	95
5	THF	72	92	91
6	Et ₂ O	86	57	91
7^d	THF	76	90	75
8 ^e	THF	72	-	-
9f	Et ₂ O	72	-	-

^{*a*} Unless otherwise noted, the reaction was carried out with **2a** (0.1 mmol), **3a** (0.3 mmol) and **1** (20 mol%) in 2mL specified solvent at room temperature. ^{*b*} The isolated yield. ^{*c*} Determined by HPLC. ^{*d*} The reaction was carried out at 0 °C. ^{*e*} The reaction was carried out at -40 °C.

3. General procedure of the asymmetric allylic substitution reactions and analytical data of the products

A solution of phenol **2** (0.1 mmol), MBH carbonate **3** (0.3 mmol) and catalysts **1h** (0.02 mmol) in 1, 4-dioxane (2 mL) was stirred at room temperature. The reaction was

monitored by TLC spectroscopy. After the reaction time given, the reaction mixture was directly purified by flash column chromatograph (eluted with EtOAc/petroleum ether: 10:1) to afford the product **4**.

Methyl (*S*)-2-(phenoxy(phenyl)methyl)acrylate (4a) Colorless oil; 95% yield; 95% ee; [α]28 D = 128.0 (*c* 0.550, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 11.1 min, t_{R(major)} = 13.5 min. ¹H NMR (300 MHz, CDCl₃): 7.46 (d, *J* = 1.8 Hz, 2H), 7.44-7.20 (m, 5H), 6.94-6.89 (m, 3H), 6.39 (s, 1H), 6.16 (s, 1H), 5.97 (t, *J* = 1.2 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.0, 157.5, 140.1, 138.8, 129.4, 128.5, 128.1, 127.4, 126.3, 121.2, 115.9, 77.2, 52.0. HRMS(ESI) for C₁₇H₁₆NaO₃ [M+Na]⁺calcd 291.0992, found 291.0992.

Methyl (S)-2-(phenyl(o-tolyloxy)methyl)acrylate (4b) Colorless oil; 95% yield; 91% ee; [α]28 D = 82.8 (*c* 1.000, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 11.2 min, t_{R(major)} = 14.7 min. ¹H NMR (300 MHz, CDCl₃): 7.48-7.45 (m, 2H), 7.36-7.25 (m, 3H), 7.12 (dd, *J* = 0.6, 7.2 Hz, 1H), 7.05 (d, *J* = 1.5 Hz, 1H), 6.84 (dd, *J* = 0.9, 7.5 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.36 (s, 1H), 6.16 (s, 1H), 6.01 (t, *J* = 1.1 Hz, 1H), 3.74 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.1, 155.5, 140.7, 139.4, 130.8, 128.5, 128.0, 127.2, 126.7, 125.7, 120.8, 112.8, 76.9, 52.0, 16.6. HRMS(ESI) for C₁₈H₁₈NaO₃ [M+Na]⁺calcd 305.1148, found 305.1147.

Methyl (S)-2-(phenyl(m-tolyloxy)methyl)acrylate (4c) Colorless oil; 94% yield; 90% ee; [α]28 D = 120.3 (*c* 1.185, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, $t_{R(minor)}$ = 11.1 min, $t_{R(major)}$ = 12.9 min. ¹H NMR (300 MHz, CDCl₃): 7.45-7.43 (m, 2H), 7.37-7.28 (m, 3H), 7.10 (t, *J* = 7.8 Hz, 1H), 6.75-6.69 (m, 3H), 6.38 (s, 1H), 6.14 (s, 1H), 5.98 (t, *J* = 1.1 Hz, 1H), 3.74 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.1, 157.5, 140.2, 139.4, 138.9, 129.1, 128.5, 128.1, 127.4, 126.2, 122.0, 116.8, 112.6, 77.1, 52.0, 21.5. HRMS(ESI) for C₁₈H₁₈NaO₃ [M+Na]⁺calcd 305.1148, found

305.1147.

Methyl (*S*)-2-(phenyl(p-tolyloxy)methyl)acrylate (4d) Colorless oil; 93% yield; 91% ee; [α]28 D = 110.0 (*c* 1.200, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 11.2 min, t_{R(major)} = 10.1 min. ¹H NMR (300 MHz, CDCl₃): 7.46-7.42 (m, 2H), 7.37-7.25 (m, 3H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.82 (dd, *J* = 2.1, 6.6 Hz, 2H), 6.38 (s, 1H), 6.11 (s, 1H), 5.97 (t, *J* = 1.1 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.2, 155.5, 140.3, 139.0, 130.5, 129.9, 128.5, 128.1, 127.5, 126.3, 115.8, 77.4, 52.0, 20.5. HRMS(ESI) for C₁₈H₁₈NaO₃ [M+Na]⁺calcd 305.1148, found 305.1149.

Methyl (*S*)-2-((2-methoxyphenoxy)(phenyl)methyl)acrylate (4e). Colorless oil; 54% yield; 87% ee; [α]25 D = 70.4 (*c* 0.6, CHCl₃); The enantiomeric excess was determined by HPLC analysis with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_R (major) = 16.5 min, t_R (minor) = 22.4 min. ¹H NMR (400 MHz, CDCl₃): 7.52-7.50 (m, 2H), 7.38-7.29 (m, 3H), 6.95-6.83 (m, 4H), 6.45 (s, 1H), 6.19 (s, 1H), 6.18 (s, 1H), 3.87 (s, 3H), 3.76 (s, 3H); ¹³C NMR(100 MHz, CDCl₃): 166.1, 150.3, 147.1, 140.3, 139.1, 128.4, 128.1, 127.5, 126.3, 122.1, 120.8, 116.5, 112.4, 78.5, 56.1, 52.0. HRMS (ESI) For C₁₈H₁₈NaO₄ [M+Na]⁺calcd 321.1097, found 321.1098.

Methyl (*S*)-2-((3-methoxyphenoxy)(phenyl)methyl)acrylate (4f). Colorless oil; 69% yield; 92% ee; $[\alpha]25$ D = 104.0 (*c* 1.0, CHCl₃); The enantiomeric excess was determined by HPLC analysis with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, $\lambda = 270$ nm, t_R (major) = 16.4 min, t_R (minor) = 18.3 min. ¹H NMR (400 MHz, CDCl₃): 7.45-7.43 (m, 2H), 7.36-7.25 (m, 3H), 7.14-7.10 (m, 1H), 6.53-6.47 (m,

3H), 6.39 (s, 1H), 6.14 (s, 1H), 5.97 (s, 1H), 3.74 (s, 6H); ¹³C NMR(100 MHz, CDCl₃): 166.1, 160.7, 158.8, 140.1, 138.8, 129.8, 128.6, 128.2, 127.5, 126.4, 108.0, 106.9, 102.4, 77.3, 55.3, 52.1. HRMS (ESI) For C₁₈H₁₈NaO₄ [M+Na]⁺calcd 321.1097, found 321.1098.

Methyl (*S*)-2-((4-methoxyphenoxy)(phenyl)methyl)acrylate (4g) Colorless oil; 89% yield; 93% ee; [α]27 D= 86.6 (*c* 1.0, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, $t_{R(minor)}$ = 11.2 min, $t_{R(major)}$ = 12.4 min. ¹H NMR (300 MHz, CDCl₃): 7.45-7.42 (m, 2H), 7.37-7.25 (m, 3H), 6.89-6.83 (m, 2H), 6.79-6.74 (m, 2H), 6.39 (s, 1H), 6.04 (s, 1H), 5.97 (t, J = 1.2 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 166.1, 154.1, 151.7, 140.3, 139.0, 128.5, 128.1, 127.4, 126.2, 117.1, 114.5, 78.2, 55.6, 52.0. HRMS (ESI) for C₁₈H₁₉O₄ [M+H]⁺ calcd 299.1278, found 299.1274.

Methyl (*S*)-2-((2-fluorophenoxy)(phenyl)methyl)acrylate (4h) Colorless oil; 58% yield; 95% ee; [α]28 D = 107.7 (*c* 0.665, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 12.8 min, t_{R(major)} = 13.8 min. ¹H NMR (300 MHz, CDCl₃): 7.46 (dd, *J* = 1.2, 8.1 Hz, 2H), 7.37-7.26 (m, 3H), 7.08-7.01 (m, 1H), 6.96-6.86 (m, 3H), 6.42 (s, 1H), 6.17 (s, 1H), 6.09 (t, *J* = 1.1 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 154.8, 151.5, 145.5, 145.4, 140.0, 138.4, 128.5, 128.3, 127.4, 126.4, 124.2, 124.1, 121.9, 121.8, 117.2, 116.5, 116.2, 78.6, 52.0. HRMS(ESI) for C₁₇H₁₅FNaO₃ [M+Na]⁺calcd 309.0897, found 309.0897.

Methyl (S)-2-((3-fluorophenoxy)(phenyl)methyl)acrylate (4i) Colorless oil; 76% yield; 95% ee; $[\alpha]28$ D = 106.6 (*c* 0.910, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ

= 270 nm, $t_{R(minor)}$ = 13.1 min, $t_{R(major)}$ = 12.0 min. ¹H NMR (300 MHz, CDCl₃): 7.43 (dd, *J* = 1.7, 8.0 Hz, 2H), 7.38-7.30 (m, 3H), 7.20-7.12 (m, 1H), 6.72-6.60 (m, 3H), 6.40 (s, 1H), 6.13 (s, 1H), 5.93 (t, *J* = 1.1 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 165.1, 161.8, 158.9, 158.8, 139.9, 138.3, 130.2, 130.1, 128.6, 128.3, 127.3, 126.5, 111.6, 111.5, 108.2, 107.9, 103.9, 103.5, 77.6, 52.1. HRMS(ESI) for $C_{17}H_{15}FNaO_3$ [M+Na]⁺calcd 309.0897, found 309.0894.

Methyl (*S*)-2-((4-fluorophenoxy)(phenyl)methyl)acrylate (4j) Colorless oil; 70% yield; 93% ee; [α]28 D = 106.5 (*c* 0.550, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 11.5 min, t_{R(major)} = 10.1 min. ¹H NMR (300 MHz, CDCl₃): 7.44-7.41 (m, 2H), 7.38-7.29 (m, 3H), 6.94-6.84 (m, 2H), 6.39 (t, *J* = 0.8 Hz, 1H), 6.06 (s, 1H), 5.94 (t, *J* = 1.1 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.0, 159.1, 155.9, 153.7, 140.1, 138.6, 128.6, 128.2, 127.4, 126.4, 117.2, 117.1, 115.9, 115.6, 78.2, 52.1. HRMS(ESI) for C₁₇H₁₅FNaO₃ [M+Na]⁺calcd 309.0897, found 309.0896.

Methyl (*S*)-2-((2-chlorophenoxy)(phenyl)methyl)acrylate (4k) Colorless oil; 79% yield; 93% ee; [α]28 D = 82.3 (*c* 0.700, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 12.3 min, t_{R(major)} = 14.9 min. ¹H NMR (300 MHz, CDCl₃): 7.51-7.48 (m, 2H), 7.37-7.27 (m, 4H), 7.12-7.06 (m, 1H), 6.89-6.82 (m, 2H), 6.39 (s, 1H), 6.22 (s, 1H), 6.16 (d, *J* = 0.9 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 152.8, 140.1, 138.5, 130.3, 128.5, 128.2, 127.5, 127.2, 126.2, 123.6, 121.8, 115.2, 77.7, 52.0. HRMS(ESI) for C₁₇H₁₅ClNaO₃ [M+Na]⁺calcd 325.0602, found 325.0600.

Methyl (*S*)-2-((3-chlorophenoxy)(phenyl)methyl)acrylate (4l) Colorless oil; 93% yield; 92% ee; $[\alpha]28$ D = 96.0 (*c* 0.950, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ

= 270 nm, $t_{R(minor)}$ = 12.2 min, $t_{R(major)}$ = 11.1 min. ¹H NMR (300 MHz, CDCl₃): 7.44-7.41 (m, 2H), 7.38-7.30 (m, 3H), 7.14 (t, *J* = 8.3 Hz, 1H), 6.94-6.89 (m, 2H), 6.82-6.78 (m, 1H), 6.40 (s, 1H), 6.12 (s, 1H), 5.92 (t, *J* = 1.1 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 158.3, 139.8, 138.2, 134.8, 130.2, 128.6, 128.3, 127.3, 126.5, 121.5, 116.5, 114.1, 77.5, 52.1. HRMS(ESI) for C₁₇H₁₅ClNaO₃ [M+Na]⁺calcd 325.0602, found 325.0596.

Methyl (*S*)-2-((4-chlorophenoxy)(phenyl)methyl)acrylate (4m) Colorless oil; 73% yield; 94% ee; [α]28 D = 107.8 (*c* 0.850, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 12.2 min, t_{R(major)} = 10.4 min. ¹H NMR (300 MHz, CDCl₃): 7.44-7.41 (m, 2H), 7.38-7.29 (m, 3H), 7.17 (d, *J* = 9.0 Hz, 2H), 6.84 (d, *J* = 9.3 Hz, 2H), 6.39 (s, 1H), 6.10 (s, 1H), 5.92 (t, *J* = 1.1 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.0, 156.1, 139.9, 138.3, 129.3, 128.6, 128.3, 127.3, 126.4, 126.1, 117.2, 77.6, 52.1. HRMS(ESI) for C₁₇H₁₅ClNaO₃ [M+Na]⁺calcd 325.0602, found 325.0591.

Methyl (*S*)-2-((3-bromophenoxy)(phenyl)methyl)acrylate (4n) Colorless oil; 93% yield; 89% ee; [α]28 D = 93.1 (*c* 1.057, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 13.3 min, t_{R(major)} = 11.7 min. ¹H NMR (300 MHz, CDCl₃): 7.42 (dd, *J* = 1.5, 8.1 Hz, 2H), 7.38-7.29 (m, 3H), 7.11-7.06 (m, 3H), 6.86-6.82 (m, 1H), 6.39 (s, 1H), 6.12 (s, 1H), 5.92 (t, *J* = 1.1 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 158.3, 139.8, 138.2, 130.5, 128.6, 128.3, 127.3, 126.5, 124.4, 122.7, 119.5, 114.5, 77.5, 52.1. HRMS(ESI) for C₁₇H₁₄BrO₃ [M-H]-calcd 345.0132, found 345.0128.

Methyl (S)-2-((naphthalen-1-yloxy)(phenyl)methyl)acrylate (40) Colorless oil; 94%

yield; 86% ee; $[\alpha]28$ D = 24.9 (*c* 0.907, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 16.1 min, t_{R(major)} = 12.8 min. ¹H NMR (300 MHz, CDCl₃): 8.35-8.31 (m, 1H), 7.78-7.75 (m, 1H), 7.56-7.52 (m, 2H), 7.48-7.20 (m, 7H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.39 (d, *J* = 5.1 Hz, 2H), 6.07 (t, *J* = 1.1 Hz, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.1, 152.9, 140.2, 139.0, 134.5, 128.5, 128.1, 127.5, 127.2, 126.3, 125.9, 125.9, 125.7, 125.2, 122.0, 120.7, 106.8, 77.2, 52.0. HRMS(ESI) for C₂₁H₁₈NaO₃ [M+Na]⁺calcd 341.1148, found 341.1144.

Methyl (S)-2-(phenoxy(o-tolyl)methyl)acrylate (4p) Colorless oil; 73% yield; 95% ee; $[\alpha]28 \text{ D} = 65.4 (c \ 0.700, \text{CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, $t_{\text{R(minor)}} = 13.3 \text{ min}, t_{\text{R(major)}} = 15.2 \text{ min}.$ ¹H NMR (300 MHz, CDCl₃): 7.41-7.37 (m, 1H), 7.25-7.19 (m, 5H), 6.94-6.88 (m, 3H), 6.44 (s, 1H), 6.34 (s, 1H), 5.74 (t, *J* = 1.2 Hz, 1H), 3.75 (s, 3H), 2.36 (s, 3H);¹³C NMR (100 MHz, CDCl₃): 166.3, 157.9, 139.1, 136.3, 136.2, 130.6, 129.4, 128.2, 127.6, 127.1, 126.2, 121.1, 115.6, 74.5, 52.1, 19.2. HRMS(ESI) for C₁₈H₁₈NaO₃ [M+Na]⁺calcd 305.1148, found 305.1151.

Methyl (*S*)-2-(phenoxy(o-tolyl)methyl)acrylate (4q) Colorless oil; 94% yield; 94% ee; [α]28 D = 128.6 (*c* 1.325, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 10.1 min, t_{R(major)} = 17.4 min. ¹H NMR (300 MHz, CDCl₃): 7.25-7.20 (m, 5H), 7.12-7.09 (m, 1H), 6.94-6.89 (m, 3H), 6.38 (t, *J* = 0.8 Hz, 1H), 6.12 (s, 1H), 5.96 (t, *J* = 1.2 Hz, 1H), 3.74 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.1, 157.6, 140.0, 138.7, 138.2, 129.3, 129.0, 128.4, 128.0, 126.3, 124.5, 121.1, 115.8, 77.2, 52.0, 21.4. HRMS(ESI) for C₁₈H₁₈NaO₃ [M+Na]⁺calcd 305.1148, found 305.1152.

Methyl (S)-2-((3-fluorophenyl)(phenoxy)methyl)acrylate (4r) Colorless oil; 93% yield; 95% ee; [α]28 D = 106.1 (*c* 0.867, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 10.3 min, t_{R(major)} = 21.9 min. ¹H NMR (300 MHz, CDCl₃): 7.33-7.15 (m, 5H), 7.00-6.89 (m, 4H), 6.40 (s, 1H), 6.15 (s, 1H), 5.99 (t, *J* = 1.1 Hz, 1H),

3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.8, 164.4, 161.2, 157.2, 141.6, 141.5, 139.7, 130.1, 130.0, 129.4, 126.6, 123.0, 123.0, 121.4, 115.8, 115.2, 114.9, 114.4, 114.1, 76.5, 76.4, 52.1. HRMS(ESI) for C₁₈H₁₇FNaO₃ [M+Na]⁺calcd 309.0897, found 309.0898.

Methyl (*S*)-2-((4-fluorophenyl)(phenoxy)methyl)acrylate (4s) Colorless oil; 95% yield; 95% ee; [α]28 D = 132.5 (*c* 1.135, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 10.0 min, t_{R(major)} = 17.6 min. ¹H NMR (300 MHz, CDCl₃): 7.42 (dd, *J* = 5.4, 8.7 Hz, 2H), 7.26-7.21 (m, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 6.95-6.89 (m, 3H), 6.39 (s, 1H), 6.13 (s, 1H), 5.99 (t, *J* = 1.1 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 164.1, 160.8, 157.3, 139.9, 134.7, 134.6, 129.4, 129.2, 129.1, 126.1, 121.3, 115.9, 115.6, 115.3, 76.6, 52.1. HRMS(ESI) for C₁₈H₁₇FNaO₃ [M+Na]⁺calcd 309.0897, found 309.0896.

Methyl (*S*)-2-((4-chlorophenyl)(phenoxy)methyl)acrylate (4t) Colorless oil; 92% yield; 91% ee; [α]28 D = 119.1 (*c* 0.833, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IA column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 18.8 min, t_{R(major)} = 17.0 min. ¹H NMR (300 MHz, CDCl₃): 7.40-7.37 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.21 (m, 2H), 6.96-6.88 (m, 3H), 6.39 (s, 1H), 6.11 (s, 1H), 6.00 (t, *J* = 1.1 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.8, 157.2, 139.7, 137.4, 133.9, 129.4, 128.8, 128.7, 126.3, 121.4, 115.8, 76.5, 52.1. HRMS(ESI) for C₁₇H₁₅ClNaO₃ [M+Na]⁺calcd 325.0602, found 325.0604.

Methyl (*S*)-2-((4-bromophenyl)(phenoxy)methyl)acrylate (4u) Colorless oil; 79% yield; 91% ee; $[\alpha]28 \text{ D} = 117.7 (c \ 1.025, \text{CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, $\lambda = 270 \text{ nm}, \text{t}_{\text{R(minor)}} = 9.8 \text{ min}, \text{t}_{\text{R(major)}} = 17.5 \text{ min}.$ ¹H NMR (300 MHz, CDCl₃): 7.46 (dd, J = 2.0, 6.8 Hz, 2H), 7.33 (dd, J = 1.8, 6.6 Hz, 2H), 7.23-7.20 (m, 2H), 6.95-6.88 (m,

3H), 6.39 (s, 1H), 6.10 (s, 1H), 5.99 (t, J = 1.1 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.8, 157.2, 139.7, 138.0, 131.6, 129.4, 129.1, 126.4, 122.1, 121.4, 115.8, 76.5, 52.0. HRMS(ESI) for C₁₇H₁₅BrNaO₃ [M+Na]⁺calcd 369.0097, found 369.0100.

Methyl (*S*)-2-((4-nitrophenyl)(phenoxy)methyl)acrylate (4v) Colorless oil; 77% yield; 93% ee; [α]28 D = 150.9 (*c* 0.790, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 97:3), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 25.0 min, t_{R(major)} = 46.8 min. ¹H NMR (300 MHz, CDCl₃): 8.20 (dd, *J* = 1.8, 6.9 Hz, 2H), 7.66 (d, *J* = 8.7 Hz, 2H), 7.25 (dd, *J* = 7.5, 8.7 Hz, 2H), 6.99-6.89 (m, 3H), 6.45 (s, 1H), 6.23 (s, 1H), 6.10 (s, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.6, 156.8, 147.6, 146.3, 139.2, 129.6, 128.1, 127.1, 123.7, 121.8, 115.8, 76.2, 52.2. HRMS(ESI) for C₁₇H₁₅NNaO₅ [M+Na]⁺calcd 336.0842, found 336.0847.

Methyl (*S*)-2-((3,5-dibromophenyl)(phenoxy)methyl)acrylate (4w) Colorless oil; 96% yield; 91% ee; [α]28 D = 90.1 (*c* 1.083, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 8.7 min, t_{R(major)} = 27.9 min. ¹H NMR (300 MHz, CDCl₃): 7.59-7.54 (m, 3H), 7.28-7.22 (m, 2H), 6.98-6.88 (m, 3H), 6.43 (s, 1H), 6.05 (s, 1H), 6.04 (s, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.5, 156.9, 143.0, 139.0, 133.7, 129.5, 129.1, 127.0, 123.0, 121.7, 115.8, 75.8, 52.2. HRMS(ESI) for C₁₇H₁₄Br₂NaO₃ [M+Na]⁺calcd 448.9181, found 448.9181.

Methyl (*R***)-2-(phenoxy(thiophen-2-yl)methyl)acrylate (4x)** Colorless oil; 93% yield; 92% ee; [α]28 D = 145.3 (*c* 0.950, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*PrOH = 95:5), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 12.9 min, t_{R(major)} = 14.6 min. ¹H NMR (300 MHz, CDCl₃): 7.59 (t, *J* = 1.7 Hz, 1H), 7.54 (d, *J* = 1.8 Hz, 1H), 7.28-7.23 (m, 2H), 6.99-6.88 (m, 3H), 6.43 (s, 1H), 6.05-6.04 (m, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.5, 156.9,

143.0, 139.1, 133.8, 129.6, 129.2, 127.1, 123.0, 121.8, 115.8, 75.9, 52.2. HRMS(ESI) for C₁₅H₁₄SNaO₃ [M+Na]⁺calcd 297.0556, found 297.0563.

4. Synthesis and characterization of MBH carbonate 5a

To a solution of racemic MBH alcohol (10 mmol) and pyridine (1 mL) in CH₂Cl₂ (20 mL) was added Phenyl chloroformate (12 mmol) at room temperature. The reaction was monitored by TLC spectroscopy. After completion of the reaction, the reaction mixture was directly purified by flash column chromatograph to afford the product **5a**. **Methyl 2-(((phenoxycarbonyl)oxy)(phenyl)methyl)acrylate (5a)** Colorless solid; 70% yield. ¹H NMR (300 MHz, CDCl₃): 7.47-7.44 (m, 2H), 7.41-7.32 (m, 5H), 7.24-7.13 (m, 3H), 6.63 (s, 1H), 6.48 (s, 1H), 6.02-6.01 (m, 1H), 3.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 165.1, 152.5, 151.0, 138.9, 136.7, 129.4, 128.8, 128.6, 127.7, 126.4, 126.0, 120.9, 77.5, 52.1.

5. General procedure of asymmetric allylic substitution reaction of 5a

A solution of MBH carbonate 5a (0.2 mmol) and catalyst 1h (0.04 mmol) in THF (4 mL) was stirred at room temperature. The reaction was monitored by TLC spectroscopy. After the reaction time given, the reaction mixture was directly purified by flash column chromatograph (eluted with EtOAc/petroleum ether: 10:1) to afford the product 4a.

6. Synthesis and characterization of chiral MBH alcohol 6

To a solution of 4g (0.1 mmol) in CH₃CN:H₂O (4:1, 2.5mL) was added ceric ammonium nitrate (CAN, 0.3 mmol) at room temperature. After stirring for 5 minutes at room temperature, all the solvents were removed and the residue was purified by flash column chromatograph to afford the product **6**.

Methyl (S)-2-(hydroxy(phenyl)methyl)acrylate (6) Colorless oil; 71% yield; 92% ee; [α]28 D = 70.0 (c = 0.100, MeOH); The enantiomeric excess was determined by HPLC with an IC column. (n-hexane : iPrOH = 95:5), 0.5 mL/min, λ = 254 nm, t_{R(minor)} = 15.2 min, t_{R(major)} = 23.8 min. ¹H NMR (300 MHz, CDCl₃): 7.39-7.26 (m, 5H), 6.34 (t, J = 0.9 Hz, 1H), 5.84 (t, J = 1.2 Hz, 1H), 5.56 (d, J = 5.7 Hz, 1H), 3.72 (s, 3H), 3.08 (d, J = 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): 166.7, 141.9, 141.2, 128.4, 127.8, 126.5, 126.1, 73.2, 51.9. HRMS(ESI) for C₁₁H₁₂NaO₃ [M+Na]⁺ calcd 215.0679, found 215.0682.

7. General procedure of 1, 3-dipolar cycloaddition reaction of aryl allyl

ether 4a

To a solution of 4a (0.1 mmol) and hydroximoyl chloride (0.12 mmol) in DCM (1mL) was added DIPEA (0.1 mmol) at room temperature. The reaction was monitored by TLC spectroscopy. After the reaction was complete, the reaction mixture was directly purified by flash column chromatograph to afford the products 7a and 7a'.

Methyl 5-((S)-phenoxy(phenyl)methyl)-3-phenyl-4,5-dihydroisoxazole-5carboxylate (7a) one of the two diastereomers Colorless oil; 40% yield; 90% ee; $[\alpha]$ 27 D = -69.9 (c = 0.77, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an OD column. (*n*-hexane : *i*PrOH = 90:10), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 21.3 min, t_{R(major)} = 28.2 min. ¹H NMR (300 MHz, CDCl₃): 7.52-7.46 (m, 5H), 7.36-7.28 (m, 3H), 7.25-7.16 (m, 4H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.84-6.81 (m, 2H), 5.86 (s, 1H), 4.05 (d, *J* = 17.4 Hz, 1H), 3.76 (s, 3H), 3.56 (d, *J* = 17.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): 170.0, 157.2, 156.9, 134.6, 130.3, 129.4, 128.6, 128.6, 128.4, 128.4, 127.5, 126.7, 121.7, 115.8, 90.8, 79.2, 53.2, 38.6. HRMS(ESI) for C₂₄H₂₁KNO₄ [M+K]⁺ calcd 426.1102, found 426.1106.

Methyl 5-((*S*)-phenoxy(phenyl)methyl)-3-phenyl-4,5-dihydroisoxazole-5carboxylate (7a') another of the two diastereomers Colorless oil; 40% yield; 90% ee; [α]27 D = -24.6 (c = 0.78, CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IA column. (*n*-hexane:*i*PrOH = 90:10), 0.5 mL/min, λ = 270 nm, t_{R(minor)} = 18.5 min, t_{R(major)} = 23.7 min. ¹H NMR (300 MHz, CDCl₃): 7.62 (dd, J = 1.5, 5.7 Hz, 2H), 7.47 (d, J = 5.1 Hz, 2H), 7.39-7.30 (m, 6H), 7.16 (t, J = 6Hz, 2H), 6.87 (d, J = 5.7 Hz, 3H), 5.69 (s, 1H), 3.78 (s, 5H); ¹³C NMR (75 MHz, CDCl₃): 170.4, 157.6, 156.1, 135.0, 130.3, 129.3, 129.0, 128.7, 128.7, 127.7, 126.8, 121.8, 116.6, 92.2, 81.4, 53.0, 39.0. HRMS(ESI) for C₂₄H₂₁KNO₄ [M+K]⁺ calcd 426.1102, found 426.1106.

8. ¹H NMR and ¹³C NMR spectra of 4, 5, 6, 7

4a

4b

4c

4d

S19

4f

----- $<^{3.739}_{3.725}$ OMe CO₂Me 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 3cxin 3412 JL-17080101 13c cdcl3 78.16 77.42 77.00 76.58 ____55.57 ____51.98 OMe CO₂Me

4g

3cxin 3411 JL-17080101 1h cdcl3

S21

70

30

40

50

60

10

20

0 ppm

180 170 160 150 140 130 120 110 100 90 80

7 4 78 4 70 6.879 6.876 6.876 6.876 6.861 6.1419 6.169 6.089 6.089 6.088 6.087 6.088 6.087 017

180 170 160 150 140 130 120 110 100 80 70 30 20 10 0 ppm 90 60 50 40

4h

3cxin 2843 JL17032002 1h cdcl3

4i

4j

4k

3cxin 2846 JL17031801 1h cdcl3

41

-3.753 000.000 438 432 410 406 371 350 345 345 330 324 324 317 311 294 188 158 859 859 828 CI CO₂Me 5.5 5.0 4.5 4.0 3.5 3.0 6.0 8.0 2.5 1.5 8.5 2.0 1.0 0.5 0.0 ppm 1.00 3cxin 2857 JL17031803 13c cdcl3 115.95 77.63 77.42 77.00 -52.08 CO₂Me 180 170 160 150 140 130 120 110 100 90 80 60 50 40 30 10 70 20 0 ppm

4m

3cxin 2848 JL17031803 1h cdcl3

3cxin 2629 zs16120104 1h cdcl3 ---0.000 7.239 7.199 6.796 6.771 6.377 6.377 6.069 6.069 6.062 COoMe ppm 11 3 10 9
 104
 1

 2014
 8

 5.17
 8

 0.99
 2

 0.98
 9
5 4 2 8 3.00 1.01 3cxin 2637 zs16120104 13c cdcl3 715289 140.23 138.96 138.95 138.95 138.56 138.55 138.55 127.24 127.24 127.24 127.24 127.24 127.24 127.24 127.24 127.25 127.24 125.56 12 52.02 -77.43 -77.20 -77.00 -76.58 180 170 160 150 140 130 120 110 100 90 70

40

80

60 50 40 30 20 10 0 ppm

4p

4q

4r

3cxin 2555 zs16111203 1h cdcl3

4t

4u

3cxin 2565 zs16111702 1h cdcl3

4v

4w

4x

5a

6

7a (one of the two diastereomers)

3cxin 3044 ZS17050401S 1h cdcl3

7a' (another of the two diastereomers)

4chenxin25/29 jl17061201-x 1HCDCl3

9. Chiral HPLC chromatograms of 4, 5, 6, 7

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.090	0.4481	105.36840	3.91946	2.7867
2	13.531	0.4302	3675.73633	134.82527	97.2133

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.246	0.3864	4596.95996	198.25998	50.4570
2	14.750	0.3952	4513.67969	172.67798	49.5430

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.203	0.3563	444.45407	20.78850	4.7365
2	14.678	0.4583	8939.20508	325.06836	95.2635

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.045	0.3507	7372.90088	321.32056	50.7051
2	12.981	0.3694	7167.83594	293.52158	49.2949

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.060	0.3897	512.64240	21.92439	4.8839
2	12.943	0.4553	9983.85742	365.43457	95.1161

4c

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.116	0.4265	3487.08765	136.27383	49.5177
2	11.165	0.4237	3555.01099	139.84894	50.4823

VWD1 A, Wavelength=270 nm (JL\JL17042703(1).D)

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.145	0.4348	8364.76855	320.60620	95.5015
2	11.241	0.3831	394.00943	17.14189	4.4985

4d

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	17.300	0.5342	2.04843e4	601.70380	50.0650
2	24.132	0.6420	2.04311e4	483.16162	49.9350

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	16.472	0.4306	1394.05212	53.95518	6.5345
2	22.380	0.5372	1.99397e4	556.91315	93.4655

4e

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	16.452	0.4523	1.11790e4	378.64157	49.9188
2	18.724	0.4962	346.07037	346.07037	50.0812

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	16.382	0.3470	176.08911	8.45808	4.2297
2	18.326	0.4431	3987.02612	136.37894	95.7703

4f

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.264	0.4022	7904.70410	327.56653	50.4611
2	12.513	0.3821	7760.23242	338.46463	49.5389

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.188	0.3802	6353.59570	263.61005	96.6040
2	12.413	0.3465	223.35489	10.05529	3.3960

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.775	0.3287	2744.57227	125.12720	49.7545
2	13.838	0.3503	2771.65674	119.02826	50.2455

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.839	0.3469	189.21298	9.09151	2.4847
2	13.835	0.4062	7425.78271	304.65503	97.5153

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.886	0.3305	3225.55371	146.01103	49.6637
2	12.949	0.3441	3269.23413	142.12965	50.3363

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.960	0.3851	7241.26611	313.36203	97.2465
2	13.104	0.3753	205.03076	9.10532	2.7535

4i

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.220	0.3842	6486.33643	256.19669	50.3183
2	11.823	0.4032	6404.28076	243.30074	49.6817

VWD1 A, Wavelength=270 nm (JL\JL17032004(2).D)

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.135	0.4351	9939.78809	380.73264	96.5366
2	11.507	0.4003	356.60742	14.84893	3.4634

4j

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.153	0.4416	2134.69653	78.35691	49.8179
2	14.741	0.4204	2150.30176	79.13994	50.1821

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.343	0.3986	296.41531	12.39357	3.3056
2	14.850	0.4599	8670.57910	314.20038	96.6944

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.098	0.2986	2280.16846	114.14850	49.7457
2	12.144	0.3106	2303.47925	110.28749	50.2543

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.106	0.3167	5411.88965	284.79822	96.1250
2	12.182	0.4188	218.16431	8.68181	3.8750

41

Peak	Retention	Peak width	Peak area	Peak neight	Peak alea
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.367	0.2838	2528.86841	132.52623	50.0958
2	12.183	0.2997	2519.19604	126.31319	49.9042

0	2.5 5	7.5	10 12.5	15 17.5	20 1111
Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.369	0.3292	4703.67578	238.12540	96.7446
2	12.228	0.3564	158.27824	7.40176	3.2554

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.007	0.3475	1546.70667	74.18143	51.0978
2	13.643	0.3699	1480.24805	66.68851	48.9022

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	11.730	0.3845	5077.42383	220.09152	94.5441
2	13.334	0.3886	293.00720	12.56534	5.4559

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.846	0.3268	6494.76025	301.73441	49.9794
2	16.053	0.3928	6500.11963	250.66284	50.0206

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.843	0.4296	1.52262e4	590.74146	93.1997
2	16.119	0.4621	1110.98511	40.07385	6.8003

40

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	14.395	0.4241	1.06802e4	379.88190	49.7665
2	16.366	0.4854	1.07805e4	331.77011	50.2335

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	13.326	0.3924	170.46632	7.24092	2.7786
2	15.230	0.4345	5964.57568	228.81248	97.2214

4p

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.029	0.3585	1.02686e4	459.08438	50.8175
2	17.011	0.6015	9938.23047	275.38965	49.1825

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.093	0.3545	218.29822	9.85504	2.9879
2	17.385	0.6184	7087.77588	191.03847	97.0121

4q

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.212	0.3671	3787.50513	141.72729	50.3130
2	21.982	0.6134	3740.38501	92.14016	49.6870

Реак	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.343	0.4226	233.51581	9.20975	2.4791
2	21.873	0.6442	9185.68164	211.85397	97.5209

4r

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	10.040	0.3167	2082.56421	92.95475	50.0886
2	17.684	0.4482	2075.19604	69.90784	49.9114

4s

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	16.867	0.4295	1.01320e4	393.18872	49.8571
2	18.615	0.4288	1.01901e4	396.07187	50.1429

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	16.989	0.4867	2.21359e4	758.00909	95.6783
2	18.794	0.4409	999.85858	37.79251	4.3217

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	9.797	0.5448	4800.68457	146.85161	49.9841
2	17.329	0.5063	4803.73633	143.75893	50.0159

S63

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	24.922	0.6503	1.98673e4	461.88550	48.2647
2	47.786	1.6466	2.12959e4	180.21129	51.7353

					240
Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	25.044	0.7147	1649.63867	38.47055	3.7671
2	46.834	2.1239	4.21413e4	330.69049	96.2329

4v

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	8.688	0.3835	3117.49341	131.21957	49.5354
2	28.927	1.1363	3175.97144	38.65076	50.4646

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	8.720	0.3991	147.12061	6.14407	4.5930
2	27.891	1.2367	3056.04199	41.18658	95.4070

4w

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.899	0.3167	7216.15723	343.13583	49.7554
2	14.590	0.3580	7287.10107	305.86911	50.2446

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	12.932	0.3671	230.50516	10.46448	3.8655
2	14.628	0.4099	5732.70654	233.11172	96.1345

4x

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	15.237	0.1049	2044.51758	292.38458	49.9294
2	23.891	0.4325	2050.30005	74.32244	50.0706

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	15.178	0.1346	3610.95264	447.27509	95.8056
2	23.753	0.4660	158.08810	5.65353	4.1944

7a (one of the two diastereomers)

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	21.430	0.3764	3.07325e4	1259.31506	49.7615
2	28.268	0.4996	3.10271e4	948.53583	50.2385

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	21.291	0.4070	6.07554e4	2345.75171	95.0603
2	28.156	0.5208	3157.06812	101.03548	4.9397

7a' (another of the two diastereomers)

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	18.207	0.5382	1.80674e4	501.54471	49.8384
2	23.721	0.7535	1.81846e4	369.33075	50.1616

Peak	Retention	Peak width	Peak area	Peak height	Peak area
	time (min)	(min)	(mAU*s)	(mAU)	(%)
1	18.514	0.5385	1983.33643	55.02317	4.9661
2	23.721	0.7240	3.79538e4	783.32397	95.0339