Enantioselective Synthesis of
anti-3-Alkenyl-2-amido-3-hydroxy esters: Application tothe Total Synthesis of (+)-AlexineLu Yu and Peter Somfai*
Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 22100, Lund, Sweden

1. General 2
2. Typical procedure for the $\mathbf{A T H} / \mathrm{DKR}$ reaction 2
3. Synthesis and characterization of starting materials 2
4. Characterization data for products ($\mathbf{2 a}-2 \mathrm{~m}$) 10
5. Experimental procedures and characterization of products (5-10 and (+)-Alexine) 15
6. NMR spectrum 20
7. HPLC spectrum of products ($\mathbf{2 a}-2 \mathrm{~g}, \mathbf{2 i}-2 \mathrm{~m}$) 61

1. General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 MHz . Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t , triplet; q, quarter; m, multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Optical rotations were determined on a Perkin Elmer Polarimeter 343 using the sodium D line (589 nm) at the indicated temperature. Analytical thin layer chromatography was performed on Merck silica gel 60 F254 plates; the plates were visualized with UV light or potassium permanganate stain. Flash chromatography was conducted on silica gel (230-400 mesh particle size). Air and moisture sensitive reactions were carried out in flame-dried, septum-capped flasks under an atmospheric pressure of nitrogen. Melting points were measured on a BÜCHI B-540 melting point apparatus and are uncorrected. High resolution mass spectra (HRMS) were recorded on Waters XEVO-G2 QTOF with electrospray ionization (ESI).

2. Typical procedure for the ATH/DKR reaction

The catalyst was prepared by stirring Dichloro(mesitylene)ruthenium(II) dimer (2.5 $\mathrm{mol} \%)$ and the ligand (S, S-DPAE) ($5 \mathrm{mmol} \%$) in $i-\mathrm{PrOH}(0.3 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 1 h . After letting the catalyst mixture cool to ambient temperature, the catalyst was transferred to a vial containing the transfer-hydrogenation substrate (1 eq). Then, $\mathrm{HCOOH}(1.5 \mathrm{eq}), \mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{eq})$ and corresponding dioxane (1 mL) was added to this system and stirred at room temperature for corresponding times. Then the mixture was purified by flash chromatography on silica to give the product.

3. Synthesis and characterization of starting materials

Methods 1 (1a, 1c-d, 1i-j, 11-n)

Methyl 2-(benzyloxycarbonylamino)ethanoate (S2) was synthesized according to the known procedure. ${ }^{1}$

Methyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3a)

To a flask containing protected glycine ester $\mathbf{S 2}$ (1.5 g, 6.7 $\mathrm{mmol}, 1 \mathrm{eq}$) and THF (30 mL) at $-78^{\circ} \mathrm{C}$ was added LiHMDS (1.0 M solution in THF, $8.7 \mathrm{~mL}, 8.7 \mathrm{mmol}, 1.3 \mathrm{eq}$). The
mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 hours. Then the 3,3 -dimethylacryloyl chloride $(1.1 \mathrm{~mL}, 8.7 \mathrm{mmol}, 1.3 \mathrm{eq})$ was added to the reaction flask via cannula and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an hour and then allowed to warm to room temperature. After diluting with EtOAc (40 mL), the mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. soln., 40 mL) and brine (40 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then filtered and concentrated under reduced pressure. The resulting oil was subjected to column chromatography (n-heptane/EtOAc 5:1) to yield the desired product S3a ($1.2 \mathrm{~g}, 3.9 \mathrm{mmol}, 58 \%$) as a clear oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.46-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 2.08 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ $169.5,167.8,155.5,153.8,135.1,128.8,128.7,128.4,119.1,68.9,52.4,45.2,27.7$, 21.2. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} 328.1161$, found 328.1160.

Methyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1a)

1a

To a solution of S3a ($1.2 \mathrm{~g}, 4 \mathrm{mmol}$) in THF (30 mL) was added DMPU ($1 \mathrm{~mL}, 8 \mathrm{mmol}$) and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Then LiHMDS (1 M solution in THF, $8 \mathrm{~mL}, 8 \mathrm{mmol}$) was added drop wise to the reaction flask. The reaction was stirred for 2.5 hours at $-78^{\circ} \mathrm{C}$ and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. soln., 30 mL). The solution was transferred to a separatory funnel and the layers were separated. The aqueous layer was EtOAc $(3 \times 40 \mathrm{~mL})$ and the combined organic layers were washed with NaHCO_{3} (sat. aq. soln., 40 mL) and brine (sat. aq. soln. 40 mL). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulting oil was subjected to flash chromatography (n-heptane/EtOAc 5:1) to yield the desired substrate $\mathbf{1 a}(0.63 \mathrm{~g}, 52 \%)$ as a clear oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{p}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 188.2,167.6,162.6,155.7,136.2,128.6,128.3,128.2,120.3,67.3,64.4$, 53.2, 28.3, 21.9. HRMS: (ESI/TOF-Q) $m / z: ~[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} 328.1161$, found 328.1163 .
Cyclohexyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3c)

S3c

Prepared from corresponding $\operatorname{ester}^{2}(0.486 \mathrm{~g}, 1.7 \mathrm{mmol})$ to give S3c ($0.41 \mathrm{~g}, 1.1 \mathrm{mmol}, 65 \%$) as clear oil following the procedure for the synthesis of S3a. ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.47$ - 7.11 (m, 5H), 6.54 (p , $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{tt}, J=8.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=$ $\left.1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.08(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 168.0,167.4,154.4,153.5,134.8,128.4,128.3,128.0,119.0,73.4,68.4,45.2,31.1$, 27.2, 25.1, 23.3, 20.7. HRMS: (ESI/TOF-Q) $m / z:[M+N a]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5}$ 396.1787, found 396.1789.

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1c)

1c

Prepared from S3c ($0.41 \mathrm{~g}, 1.1 \mathrm{mmol})$ to give $\mathbf{1 c}(0.29 \mathrm{~g}$, $0.8 \mathrm{mmol}, 73 \%$) as clear oil following the procedure for the synthesis of $\mathbf{1 a} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.63-$ 7.03 (m, 5H), 6.38 (p, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{tq}, J=$ $8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.87 - $1.57(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.15(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 188.4, 166.2, 161.3, 155.5, 136.2, 128.4, 128.0, 128.0, 120.4, 74.6, 67.0, 64.67, 31.2, 31.0, 28.0, 25.2, 23.3, 23.2, 21.5. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5} 396.1787$, found 396.1791.

Benzyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3d)

S3d

Prepared from corresponding ester ${ }^{2}(0.58 \mathrm{~g}, 1.9 \mathrm{mmol})$ to give S3d ($0.38 \mathrm{~g}, 1 \mathrm{mmol}, 53 \%$) as clear oil following the procedure for the synthesis of S3a. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 7.33$ (dddd, $J=8.9,7.9,5.0,2.9 \mathrm{~Hz}, 10 \mathrm{H}$), 6.61 (p, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, $2.10(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 168.6,167.4,155.0,153.5,135.3,134.8,128.5,128.4,128.4$, 128.2, 128.0, 118.9, 68.5, 66.8, 45.1, 27.4, 20.9. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} 404.1474$, found 404.1477.

Benzyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1d)

1d

Prepared from S3d ($0.41 \mathrm{~g}, 1.1 \mathrm{mmol}$) to give $\mathbf{1 c}(0.29 \mathrm{~g}, 0.8$ $\mathrm{mmol}, 73 \%$) as white solid following the procedure for the synthesis of 1a. Melting point: $42-44^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.52-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.31(\mathrm{p}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-4.94(\mathrm{~m}$, $4 \mathrm{H}), 2.16(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 187.9,166.9,162.2,155.6,136.2,135.0,128.6,128.5,128.3,128.2,128.1,120.3$, 67.8, 67.2, 64.5, 28.1, 21.7. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} 404.1474$, found 404.1476 .

Methyl (\boldsymbol{E})-N-((benzyloxy)carbonyl)-N-(2-methylbut-2-enoyl)glycinate (S3i)

S3i

Prepared from S2 (2 g, 9 mmol$)$ to give $\mathbf{S 3 i}(1.5 \mathrm{~g}, 5 \mathrm{mmol}$, 56%) as clear oil following the procedure for the synthesis of S3a. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.45-7.27(\mathrm{~m}, 5 \mathrm{H})$, 6.13 (qq, $J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (s, 2H), 4.44 (s, 2H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{p}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{dq}, J=7.0,1.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta 174.5,169.4,154.2,134.8,134.1,131.5,128.8,128.7,128.5,69.0,52.4$,
46.2, 13.8, 13.4. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} 328.1161$, found 328.1159 .

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1i)

$1 i$

Prepared from S3i ($1.3 \mathrm{~g}, 4.3 \mathrm{mmol}$) to give $\mathbf{1 d}(1.03 \mathrm{~g}, 3.4$ $\mathrm{mmol}, 79 \%$) as white solid following the procedure for the synthesis of $\mathbf{1 a} . \mathrm{mp}\left(39-41^{\circ} \mathrm{C}\right){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.48-7.27$ (m, 5H), 7.13 (qd, $J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (d, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 192.1, 167.9, 155.7, 143.4, 136.1, 136.1, 128.7, 128.4, 128.2, 67.4, 58.0, 53.3, 15.5, 11.5. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$ 328.1161, found 328.1165.

Methyl N-((benzyloxy)carbonyl)-N-methacryloylglycinate (S3j)

S3j

Prepared from S2 (1.5 g, 6.7 mmol) to give $\mathbf{~ S 3 j}(1.1 \mathrm{~g}, 3.8$ $\mathrm{mmol}, 57 \%$) as clear oil following the procedure for the synthesis of S3a. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.44-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 5.36(\mathrm{p}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H})$, 4.46 (s, 2H), 3.71 (s, 3H), 1.94 (dd, $J=1.6,1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl 3) δ 173.7, 169.1, 154.0, 142.1, 134.6, 128.9, 128.7, 128.7, 128.6, 118.0, 69.2, 52.5, 45.8, 19.1. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5} 314.1004$, found 314.1007.

Methyl 2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxopent-4-enoate (1j)

1 j

Prepared from S3j ($1.1 \mathrm{~g}, 3.8 \mathrm{mmol}$) to give $\mathbf{1 c}(0.6 \mathrm{~g}, 2.1 \mathrm{mmol}$, 55%) as clear oil following the procedure for the synthesis of $\mathbf{1 a}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$, $6.11-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 1.93$ ($\mathrm{t}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) 192.67, 167.47, 155.64, 142.03, 136.06, 129.56, 128.67, 128.39, 128.24, 67.50, 58.57, 53.36, 17.86. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5} 314.1004$, found 314.1001.

Methyl N-((benzyloxy)carbonyl)-N-cinnamoylglycinate (S3I)

S31

Prepared from S2 (2 g, 9 mmol) to give $\mathbf{S 3 1}$ ($1.82 \mathrm{~g}, 5.2$ $\mathrm{mmol}, 57 \%)$ as yellowish oil following the procedure for the synthesis of S3a. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ 7.75 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48 (dd, $J=7.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.33$ (m, 8H), 5.28 (s, 2H), 4.60 (s, 2H), 3.69 (s, 3H). ${ }^{13}$ C NMR ($\mathbf{1 0 0}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 169.1,167.9,153.7,145.2,134.8,134.7,130.3,128.8,128.8,128.4$, 128.3, 120.0, 69.1, 52.3, 45.6. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} 376.1161$, found 376.1159.

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-3-oxo-5-phenylpent-4-enoate (11)

11

Prepared from S31 ($1.8 \mathrm{~g}, 5.2 \mathrm{mmol}$) to give $\mathbf{1 e}(1 \mathrm{~g}, 2.9$ $\mathrm{mmol}, 56 \%$) as yellowish solid following the procedure for the synthesis of $\mathbf{1 a} \cdot \mathrm{mp}\left(84-87^{\circ} \mathrm{C}\right)$. Compound $\mathbf{1 1}$ exists as keto/enol tautomers as seen by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($400 \mathbf{~ M H z , ~ C D C l} 3$) $\delta 12.26$ (s, 0.7 H), 7.85 (d, $J=$ $15.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.66-7.32(\mathrm{~m}, 9 \mathrm{H}), 7.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 6.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.70(\mathrm{~s}, 0.5 \mathrm{H}), 5.42(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.30-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 189.1, 167.1, 155.6, 146.6, 139.0, 136.3, 136.0, 133.8, 131.5, 129.7, 129.1, 128.9, 128.8, 128.6, 128.3, 128.2, 128.1, 128.0, 121.6, 117.2, 67.4, 62.9, 53.4. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} 376.1161$, found 376.1157.

Methyl (E)-N-((benzyloxy)carbonyl)-N-(3-(4-bromophenyl)acryloyl)glycinate (S3m)

S3m

Prepared from S2 (2 g, 9 mmol) to give $\mathbf{S 3 m}$ ($1.8 \mathrm{~g}, 4.2$ $\mathrm{mmol}, 46 \%$) as yellow solid following the procedure for the synthesis of S3a. mp $\left(104-106^{\circ} \mathrm{C}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.65(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $5 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 169.1,167.7,153.7,143.6,134.7,133.8,132.1,129.7,128.9,128.8$, 128.5, 124.5, 120.8, 77.5, 77.2, 76.8, 69.2, 52.4, 45.6. HRMS: (ESI/TOF-Q) m/z: [M $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{Br} 454.0266$, found 454.0270.

Methyl

(E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-oxopent-4-enoate (1m)

$1 m$

Prepared from S3m ($1.2 \mathrm{~g}, 2.8 \mathrm{mmol}$) to give $\mathbf{1 f}(0.65$ $\mathrm{g}, 1.5 \mathrm{mmol}, 54 \%$) as yellow solid following the procedure for the synthesis of $\mathbf{1 a} . \mathrm{mp}\left(113-116^{\circ} \mathrm{C}\right)$. Compound 1 m exists as keto/enol tautomers as seen by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ $12.23(\mathrm{~s}, 0.5 \mathrm{H}), 7.76(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.62-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.92(\mathrm{t}, J=16.7 \mathrm{~Hz}$, $0.5 \mathrm{H}), 6.19$ (d, $J=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}$), 5.79 (s, 0.5 H$), 5.41$ (d, $J=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.32$ $5.08(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 189.2, 167.1, 155.7, 145.1, 137.5, 136.4, 136.1, 132.8, 132.5, 132.1, 130.3, 129.4, 128.7, 128.4, 128.3,
128.2, 126.0, 122.1, 117.9, 67.5, 63.1, 53.5. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{Br} 454.0266$, found 454.0261.

Methyl N-((benzyloxy)carbonyl)-N-(hex-2-ynoyl)glycinate (S3n)

Prepared from S2 $(1.5 \mathrm{~g}, 6.7 \mathrm{mmol})$ to give $\mathbf{S 3 n}(0.6 \mathrm{~g}$, $2.7 \mathrm{mmol}, 40 \%$) as clear oil following the procedure for the synthesis of S3a. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ $7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 2.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.4,153.0,152.6,134.6,128.8,128.7,128.7,128.5,128.4,128.4,98.3,75.1$, 69.2, 52.4, 45.0, 44.9, 21.2, 21.0, 13.5. HRMS: (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} 340.1161$, found 340.1158 .

Methyl 2-(((benzyloxy)carbonyl)amino)-3-oxooct-4-ynoate (1n)

Prepared from S3h $(0.45 \mathrm{~g}, 1.4 \mathrm{mmol})$ to give $\mathbf{1 h}(0.22 \mathrm{~g}$, $0.7 \mathrm{mmol}, 50 \%$) as white solid following the procedure for the synthesis of $\mathbf{1 a} . \mathrm{mp}\left(97-100^{\circ} \mathrm{C}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.48-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.91(\mathrm{q}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{dt}, J=1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.44(\mathrm{~m}, 2 \mathrm{H})$, 0.95 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 167.8,167.0,160.0,135.0$, 128.5, 128.3, 128.1, 122.6, 68.0, 65.8, 52.9, 30.5, 20.3, 13.5. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} 340.1161$, found 340.1165.

Methods 2 (1b, 1e, 1h, 1k, 10)

Diethyl 2-(tert-butoxycarbonylamino)propandioate (S4) was synthesized according to known procedure from commercially available diethyl aminopropanedioate. ${ }^{1}$

2-(tert-butoxycarbonylamino)-3-ethoxy-3-oxopropanoic acid (S5) was synthesized according to known procedure from S4. ${ }^{1}$

1b

To a stirred mixture of Cbz-protected malonate $\mathbf{S 5}(10 \mathrm{~g}, 35.6$ mmol, 1 eq) and $\mathrm{MgCl}_{2}(20.4 \mathrm{~g}, 213.5 \mathrm{mmol}, 6 \mathrm{eq})$ in THF $(100 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(12.5 \mathrm{~mL}, 89 \mathrm{mmol}, 2.5 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 2 hours. Crotonoyl chloride ($5 \mathrm{~mL}, 42.7 \mathrm{mmol}, 1.2$ equiv) was added to the malonate mixture in $\operatorname{THF}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then the reaction was brought to rt and stirred 5 days. After diluting with EtOAc (100 mL), the mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. soln., 100 mL) and brine (100 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica (n-heptane/EtOAc 5:1) to give the product ($8.2 \mathrm{~g}, 25.7 \mathrm{mmol}, 72 \%$) as a yellowish oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.33(\mathrm{dtd}, J=12.5,4.4,1.7 \mathrm{~Hz}, 5 \mathrm{H}), 6.37(\mathrm{p}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.12$ $(\mathrm{m}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 188.4,167.0,162.1,155.6,136.3,128.6,128.3$, 128.1, 120.3, 67.2, 64.6, 62.4, 28.2, 21.8, 14.1. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} 342.1317$, found 342.1320.

Ethyl 2-((tert-butoxycarbonyl)amino)-5-methyl-3-oxohex-4-enoate (1e)

$1 \mathbf{e}$

Prepared from Boc-protected $\mathbf{S 5}(1.2 \mathrm{~g}, 4.8 \mathrm{mmol})$ to give $\mathbf{1 e}$ $(0.88 \mathrm{~g}, 3.1 \mathrm{mmol}, 65 \%)$ as clear oil following the procedure for the synthesis of $\mathbf{1 b}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.49-$ $6.16(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41-4.06(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.93$ (dd, $J=$ $18.1,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 189.0,167.5,161.6,155.1,120.5,80.4,64.5,62.2,28.4$, 28.3, 28.2, 21.7, 14.2. HRMS: (ESI/TOF-Q) $m / z:[M+N a]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}$ 308.1474, found 308.1477.

Ethyl (E)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1h)

1h

Prepared from Cbz-protected $\mathbf{S 5}(1.2 \mathrm{~g}, 4.8 \mathrm{mmol})$ to give $\mathbf{1 h}$ $(1.0 \mathrm{~g}, 3.3 \mathrm{mmol}, 69 \%)$ as clear oil following the procedure for the synthesis of $\mathbf{1 b}$. Compound $\mathbf{1 h}$ decomposed even stored in $-20^{\circ} \mathrm{C}$ for 2 days, and exists as keto/enol tautomers as seen by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 12.07(\mathrm{~s}, 0.2 \mathrm{H})$, $7.06(\mathrm{dq}, J=15.6,6.9 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.63(\mathrm{dq}, J=15.6,6.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.31(\mathrm{dq}, J=15.5$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.49(\mathrm{~s}, 0.3 \mathrm{H}), 5.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.7 \mathrm{H})$, 4.15 (tddd, $J=14.1,10.8,6.2,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.84 (ddd, $J=23.2,6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37$ (d, $J=13.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.19(\mathrm{dt}, J=10.3,7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3) δ 189.4, 171.3, 166.8, 154.9, 147.1, 146.1, 137.7, 127.7, 126.1, 121.6, 80.2, 62.2, 62.1, 60.9, 28.2, 28.1, 18.6, 18.6, 18.5, 14.1, 14.0. HRMS: (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5} 294.1317$, found 294.1311.

1k

Prepared from Cbz-protected $\mathbf{S 5}(2 \mathrm{~g}, 7.1 \mathrm{mmol})$ to give $\mathbf{1 k}(1.71 \mathrm{~g}, 5.2 \mathrm{mmol}, 73 \%)$ as yellowish oil following the procedure for the synthesis of $\mathbf{1 b}$. Compound $\mathbf{1 k}$ exists as keto/enol tautomers as seen by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 12.19$ (s, 0.3 H), 7.80 (dd, $J=15.2$, $11.2 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.09$ (dd, $J=15.3,10.6 \mathrm{~Hz}, 0.3 \mathrm{H}$), $6.56-5.79$ (m, 3.6H), $5.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.15(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.08(\mathrm{~m}, 2 \mathrm{H})$, 1.87 (dd, $J=20.7,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.09(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 189.4,166.8,155.6,146.9,143.8,140.9,139.5$, $137.9,136.5,136.2,131.1,130.2,128.6,128.3,128.2,127.7,123.1,120.6,118.6$, $67.3,62.9,62.5,61.2,32.0,29.1,22.8,19.1,18.8,14.3,14.2,14.1$. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} 354.1317$, found 354.1320.

6-Ethyl 1-methyl (E)-5-(((benzyloxy)carbonyl)amino)-4-oxohex-2-enedioate (10)

Prepared from Cbz-protected $\mathbf{S 5}(1.5 \mathrm{~g}, 5.3 \mathrm{mmol})$ to give $10(1.35 \mathrm{~g}, 3.9 \mathrm{mmol}, 70 \%)$ as white solid following the procedure for the synthesis of $\mathbf{1 b} . \mathrm{mp}\left(90-93^{\circ} \mathrm{C}\right)$. Compound $\mathbf{1 0}$ exists as keto/enol tautomers as seen by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 11.95$ (s, $1 \mathrm{H}), 7.47$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (s, 1H), 5.15 (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.26 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), $1.45-0.94$ (m, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 155.9, 136.1, 133.1, 128.7, 128.4, 128.3, 126.9, 100.1, 67.7, 62.0, 52.2, 14.2. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{7} 372.1059$, found 372.1058.

Methods 3 (1f, 1g)

Methyl 2-acetamido-5-methyl-3-oxohex-4-enoate (1f)

To a flask was added t-BuOK ($0.71 \mathrm{~g}, 6.33 \mathrm{mmol}, 1.5 \mathrm{eq}$) and THF (15 mL) and cool to $-78^{\circ} \mathrm{C}$. Benzophenone glycine imine S6 ($1 \mathrm{~g}, 4.2 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (15 mL) was then added via cannula. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and was then transferred to the flask containing the acid chloride (1.2
$\mathrm{mL}, 10.5 \mathrm{mmol}, 2.5 \mathrm{eq})$ via cannula. The reaction was stirred for an additional 1 hour at $-78^{\circ} \mathrm{C}$ and then $\mathrm{HCl}(1 \mathrm{M} \mathrm{aq} 30 \mathrm{~mL}$.$) was added and the reaction was warmed to$ ambient temperature and stirred overnight and then concentrated to dryness. The crude material was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and washed $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The aqueous layer was then concentrated and azeotroped two times with MeOH . At this point the crude mixture was re-suspended in anhydrous MeOH and filtered to remove KCl . The filtrate was concentrated and carried on to the next step without further purification.

The crude amine salt was dissolved in THF (30 mL) and cooled to $0^{\circ} \mathrm{C}$. Acetic anhydride ($0.52 \mathrm{~mL}, 5.48 \mathrm{mmol}, 1.3 \mathrm{eq}$) was then added followed by triethylamine $(0.76 \mathrm{~mL}, 5.48 \mathrm{mmol}, 1.3 \mathrm{eq})$. The reaction was warmed to rt and then stirred overnight. The mixture was then diluted with EtOAc (30 mL) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The aqueous layer was EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered and concentrated to yield an oil which was then subjected to flash chromatography (n-heptane/EtOAc 3:1) to give product $\mathbf{1 f}$ $(0.47 \mathrm{~g}, 2.2 \mathrm{mmol}, 52 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) ~ \delta 6.95(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{p}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 188.5, 169.9, 167.4, 162.2, 120.3, 62.9, 52.9, 28.1, 22.6, 21.5. HRMS: (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$ 236.0899, found 236.0901.

Methyl 2-benzamido-5-methyl-3-oxohex-4-enoate (1g)

1g

Prepared from benzophenone glycine imine $\mathbf{S 6}(1 \mathrm{~g}, 4.2 \mathrm{mmol})$ to give $\mathbf{1 g}(0.73 \mathrm{~g}, 2.7 \mathrm{mmol}, 63 \%)$ as colorless oil following the procedure for the synthesis of $\mathbf{1 f}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.87(\mathrm{dq}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.46 (ddd, $J=8.5,6.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{p}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.39 (dd, $J=6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.24$ (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 188.3,167.3,166.7,162.7,133.1,131.9,129.9,128.5,128.2,127.2,120.2$, 63.3, 53.0, 28.1, 21.6. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$ 298.1055, found 298.1059.

Characterization data for products (4, 2a-2m)

Methyl 2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhexanoate (4)

4

Prepared from 1a $(61.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ to give the over-reduction product $\mathbf{4}(2.5 \mathrm{mg}, 3 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.69(\mathrm{~d}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}$, $1 \mathrm{H}), 1.30-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{dd}, \mathrm{J}=19.1 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 171.0,156.4,136.0,128.6,128.5,128.3,128.2,128.2,128.1,128.1,71.0$,

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2a)

2a

Prepared from 1a $(61.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ to give the product 2a $(44.5 \mathrm{mg}, 0.14 \mathrm{mmol}, 72 \%)$ as a colorless oil. $96.5: 3.5$ e.r. determined by HPLC analysis (Chiralcel IA, 7.5\% 2-propanol in hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=49.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ 56.6 min). Optical rotation: $[\alpha]_{D}^{20}+41.3$ (c 1.7, CHCl_{3}) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dt, J $=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 170.5,156.5,138.3,136.0,128.5,128.2,128.1,121.9,69.6,67.2,59.0,52.4$, 25.9, 18.3. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5}$ 330.1317, found 330.1320 .
Ethyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2b)

2b

Prepared from 1b ($63.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) to give the product $\mathbf{2 b}$ $(49.8 \mathrm{mg}, 0.16 \mathrm{mmol}, 78 \%)$ as a colorless oil. $97.5: 2.5$ e.r. determined by HPLC analysis (Chiralcel IA, 7.5\% 2-propanol in hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=38.3 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ 41.3 min). Optical rotation: $[\alpha]_{D}^{20}+29.8\left(\mathrm{c} 6.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dp}, J$ $=9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=9.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=8.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 170.0,156.7,138.2,136.1$, 128.6, 128.6, 128.3, 128.2, 122.1, 69.7, 67.4, 61.8, 59.2, 26.0, 18.5, 14.2. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} 344.1474$, found 344.1470.

Cyclohexyl

(2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2c)

Prepared from 1c ($74.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) to give the product $\mathbf{2 c}$
 ($49 \mathrm{mg}, 0.13 \mathrm{mmol}, 66 \%$) as a colorless oil. 97:3 e.r. determined by HPLC analysis (Chiralcel IA, 15\% 2-propanol in hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.5 \mathrm{~min}$, $\mathrm{t}_{\text {major }}=18.3 \mathrm{~min}$). Optical rotation: $[\alpha]_{D}^{20}+29.9$ (c 4.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.40-7.29$ (m, $6 \mathrm{H}), 5.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dp}, J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{dq}, J$ $=8.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H})$, $1.80(\mathrm{dd}, J=11.5,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.13(\mathrm{~m}$, 7H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 169.4, 156.7, 138.2, 136.2, 128.6, 128.6, 128.3,
$128.3,122.2,74.5,69.9,67.4,59.3,31.5,26.0,26.0,25.3,23.7,23.6,23.6,18.6$. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} 398.1943$, found 398.2016.

Benzyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2d)

Prepared from 1d ($76.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) to give the product $\mathbf{2 d}$ (55

2d $\mathrm{mg}, 0.14 \mathrm{mmol}, 72 \%$) as a colorless oil. 96.5:3.5 e.r. determined by HPLC analysis (Chiralcel IA, 30\% 2-propanol in hexanes, 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=16.1 \mathrm{~min}, \mathrm{t}_{\text {major }}=18.0 \mathrm{~min}$). Optical rotation: $[\alpha]_{D}^{20}+29.0\left(\right.$ c $\left.4.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.35(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 10 \mathrm{H}), 5.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.14(\mathrm{~m}, 3 \mathrm{H})$, $5.13(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 170.0, 156.6, 138.5, 136.1, 135.1, 128.7, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 122.0, 69.7, 67.4, 67.4, 59.2, 25.9, 18.4. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} 406.1630$, found 406.1630.

Ethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-5-methylhex-4-enoate

 (2e)Prepared from 1e ($57 \mathrm{mg}, 0.2 \mathrm{mmol}$) to give the product $\mathbf{2 d}$ (38

2e $\mathrm{mg}, 0.13 \mathrm{mmol}, 67 \%$) as a colorless oil. 97:3 e.r. determined by HPLC analysis (Chiralcel IA, 7.5\% 2-propanol in hexanes, 0.8 $\left.\mathrm{mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {major }}=15.3 \mathrm{~min}, \mathrm{t}_{\text {minor }}=17.3 \mathrm{~min}\right)$. Optical rotation: $[\alpha]_{D}^{20}+48.3\left(\mathrm{c} 3.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}\right) \delta 5.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dp}, J=9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 170.3,156.4,137.9,122.3,80.5,69.9,61.7,58.9,28.4,26.0$, 26.0, 18.5, 14.3, 14.2. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{5}$ 310.1630 , found 310.1630 .

Methyl (2S,3S)-2-acetamido-3-hydroxy-5-methylhex-4-enoate (2f)
Prepared from $\mathbf{1 f}(64 \mathrm{mg}, 0.3 \mathrm{mmol}$) to give the product $\mathbf{2 f}$ (37

$2 f$ $\mathrm{mg}, 0.17 \mathrm{mmol}, 58 \%)$ as a colorless oil. 81.7:18.3 e.r. determined by HPLC analysis (Chiralcel IA, 30\% 2-propanol in hexanes, $\left.1 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.5 \mathrm{~min}\right)$. Optical rotation: $[\alpha]_{D}^{20}+31.1$ (c 3.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (ddp, $J=8.7,4.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.06$ $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.53(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.4$, $171.3,170.5,138.0,122.8,122.1,69.9,69.8,68.6,58.0,57.1,52.6,26.0,25.9,23.1$, 18.5, 18.4. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4} 238.1055$, found 238.1056.

Methyl (2S,3S)-2-benzamido-3-hydroxy-5-methylhex-4-enoate (2g)

Prepared from $\mathbf{1 g}(82.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ to give the product $\mathbf{2 g}$ (55
 $\mathrm{mg}, 0.2 \mathrm{mmol}, 67 \%)$ as a colorless oil. 83.4:16.6 e.r. determined by HPLC analysis (Chiralcel IA, 7.5\% 2-propanol in hexanes, $\left.0.8 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {major }}=32.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=34.1 \mathrm{~min}\right)$. Optical rotation: $[\alpha]_{D}^{20}+41.7$ (c 5.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.93-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=25.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.12(\mathrm{~m}$, $1 \mathrm{H}), 4.96-4.70(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-1.41(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 170.6,168.2,138.0,138.0,133.4,132.1,131.9,128.7,128.6$, 128.6, 127.3, 122.8, 122.2, 70.1, 68.8, 58.4, 57.5, 52.7, 52.7, 26.0, 25.9, 18.5, 18.4. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} 300.1212$, found 300.1214.

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylhex-4-enoate (2i)

$2 i$

Prepared from 1d ($61.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) to give the product 2 d $(56.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 91 \%)$ as a colorless oil. $98.1: 1.9$ e.r. determined by HPLC analysis (Chiralcel IA, 7.5\% 2-propanol in hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=38.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ 44.4 min). Optical rotation: $[\alpha]_{D}^{20}+15.1$ (c $4.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.52(\mathrm{q}, J=6.3,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.19-$ $5.01(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=8.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $2.57(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.3$, 156.0, 136.0, 133.5, 128.5, 128.2, 128.0, 122.7, 77.4, 67.1, 56.9, 52.3, 13.1, 12.1. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} 330.1317$, found 330.1316 .

Methyl

(2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylpent-4-enoate (2j)

2j

Prepared from $\mathbf{1 j}$ ($58.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) to give the product $\mathbf{2 j}$ (35.2 $\mathrm{mg}, 0.12 \mathrm{mmol}, 60 \%$) as a colorless oil. 98.5:1.5 e.r. determined by HPLC analysis (Chiralcel IA, 7\% 2-propanol in hexanes, 1 $\mathrm{mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=25.9 \mathrm{~min}, \mathrm{t}_{\text {major }}=32.5 \mathrm{~min}$). Optical rotation: $[\alpha]_{D}^{20}+20.3$ (c $2.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=5.6,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.02$ (dq, $J=16.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{dd}, J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.76$ (s, 3H), 1.79 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 170.9,156.3$, 143.2, 136.1, 128.7, 128.6, 128.4, 128.3, 113.1, 76.0, 67.4, 57.0, 52.5, 18.8. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5} 316.1161$, found 316.1162.

Methyl

(2S,3S,4E,6E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxyocta-4,6-dienoate (2k)

Prepared from $\mathbf{1 k}(66.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ to give the product 2k ($51.2 \mathrm{mg}, 0.15 \mathrm{mmol}, 77 \%$) as a colorless oil. $92: 8$ e.r. determined by HPLC analysis (Chiralcel IB, 20\% 2-propanol in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=234 \mathrm{~nm}, \mathrm{t}_{\text {major }}=$ $13.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=20.4 \mathrm{~min}$). Optical rotation: $[\alpha]_{D}^{20}$ $+16.6\left(\mathrm{c} 4.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{dd}$, $J=15.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{dd}, J=15.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{q}, J=4.7,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{pd}, J=7.2$, $3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{dt}, J=7.1,2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\delta 169.9,156.8,136.1,133.2,131.3,130.5,128.6,128.6$, 128.3, 128.2, 128.1, 126.8, 73.4, 67.4, 67.4, 61.9, 59.1, 18.2, 14.3. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5} 356.1474$, found 356.1476.

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-phenylpent-4-enoate (21)

21

Prepared from $1 \mathbf{e}(70.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ to give the product 2e $(43.6 \mathrm{mg}, 0.12 \mathrm{mmol}, 61 \%)$ as a colorless oil. 88.4:11.6 e.r. determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\text {minor }}=74.9 \mathrm{~min}, \mathrm{t}_{\text {major }}=84.5 \mathrm{~min}$). Optical rotation: $[\alpha]_{D}^{20}+21.6\left(\mathrm{c} 3.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.43-7.25(\mathrm{~m}, 10 \mathrm{H})$, $6.67(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.12 (dd, $J=5.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.83-4.59(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.67(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,156.8,136.2,136.0,132.8,128.7,128.7,128.6,128.6$, 128.6, 128.6, 128.4, 128.3, 128.2, 126.9, 126.8, 126.4, 73.7, 67.6, 59.2, 52.8. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5} 378.1317$, found 378.1320 .

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-hydroxypent-4-enoate
(2m)

2m

Prepared from $\mathbf{1 f}(86.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ to give the product $\mathbf{2 f}$ ($37.2 \mathrm{mg}, 0.09 \mathrm{mmol}, 43 \%$) as a yellowish oil. 90.1:9.9 e.r. determined by HPLC analysis (Chiralcel IA, 7.5\% 2-propanol in hexanes, 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=121.4 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $141.0 \mathrm{~min})$. Optical rotation: $[\alpha]_{D}^{20}+23.5$ (c $1.1, \mathrm{CHCl}_{3}$). ${ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.51(\mathrm{~m}$,
$1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 2H), 4.78 - 4.57 (m, 2H), 3.76 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l 3) ~} \delta 170.1,156.6$, 135.8, 135.0, 131.7, 131.4, 128.5, 128.3, 128.2, 128.1, 127.1, 121.8, 73.4, 67.4. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{Br} 456.0423$, found 456.0423.

4. Experimental procedures and characterization of products (5-10 and (+)-Alexine (3))

Benzyl

((5S,6R)-5-(2-methylprop-1-en-1-yl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)carbamate (5)

To a solution of $\mathbf{2 b}(1.86 \mathrm{~g}, 5.8 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ was added NaBH_{4} $(0.44 \mathrm{~g}, 11.6 \mathrm{mmol}, 2 \mathrm{eq})$. The reaction mixture was stirred at room temperature overnight. After removing most of the solvent under reduced pressure, the crude mixture was diluted with EtOAc (50 mL). The mixture was then washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. soln., 50 mL) and brine (40 mL). The combined organic solvent phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was used directly for next step.

The crude material was dissolved in $\mathrm{CHCl}_{3} /$ DIPEA ($45 \mathrm{~mL} .1: 1$), and to it benzyl chloromethyl ether ($13.4 \mathrm{~mL}, 58 \mathrm{mmol}, 10 \mathrm{eq}$) was added. The reaction mixture was stirred at room temperature overnight. After which it was quenched with NaHCO_{3} (sat. aq. soln., 40 mL) and extracted with EtOAc (40 mL), followed by brine wash. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, solvent evaporated under reduced pressure and the residue was purified by column chromatography (n-heptane/EtOAc 6:1) to furnish the corresponding di-BOM product $\mathbf{5}$ as a colorless oil ($2.33 \mathrm{~g}, 4.5 \mathrm{mmol}, 78 \%$). Optical rotation: $[\alpha]_{D}^{20}+58.7\left(\mathrm{c} 5.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (dddd, $J=11.7,8.9,7.3,4.9 \mathrm{~Hz}, 15 \mathrm{H}$), 5.45 (d, $J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30-5.11(\mathrm{~m}, 3 \mathrm{H}), 4.92-4.68(\mathrm{~m}, 6 \mathrm{H}), 4.68-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (dd, $J=10.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.3,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 156.1,139.4$, $138.0,137.8,136.7,128.6,128.6,128.5,128.5,128.1,127.9,127.8,127.8,127.7$,

Benzyl

((5R,6R)-5-((R)-1-hydroxyallyl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)car bamate (7)

b) ZnCl_{2}, Vinyl MgBr

DCM/toluene, $-78^{\circ} \mathrm{C}-\mathrm{rt}$

Ozone was bubbled through a vigorously stirred solution of $5(0.2 \mathrm{~g}, 0.39 \mathrm{mmol}, 1 \mathrm{eq})$ in DCM $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. When TLC showed full conversion of the starting material, dimethylsulfide was added ($0.29 \mathrm{~mL}, 3.9 \mathrm{mmol}, 10 \mathrm{eq}$) and the mixture was allowed to warm to room temperature for 6 h . Evaporation of the solvent afforded crude aldehyde which can be used directly in next step.

In another flammable dried round bottom flask, a commercial vinyl magnesium bromide solution ($2.8 \mathrm{~mL}, 0.7 \mathrm{M}$ in THF, 5 eq) was added and evaporated to dryness under reduced pressure, and the residue was dissolved in anhydrous DCM under nitrogen. This operation was repeated twice, and the obtained Grignard reagent solution in $\mathrm{DCM}(0.5 \mathrm{M})$ was combined with powered anhydrous $\mathrm{ZnCl}_{2}(0.13 \mathrm{~g}, 0.96$ $\mathrm{mmol}, 2.5 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. The resulted suspension was stirred at room temperature for 5 h , and then cooled to $-78^{\circ} \mathrm{C}$. A solution of the fresh prepared aldehyde in anhydrous toluene (0.05 M) was added via cannula slowly. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , then warm to room temperature and stirred overnight. After which it was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. soln., 30 mL) and extracted with EtOAc (30 mL), followed by brine wash. The organic extract was dried over MgSO_{4}, filtered, solvent evaporated under vacuum and the residue was purified by column chromatography (n-heptane/ EtOAc 3:1) to furnish the corresponding mixed ($3: 1 d r$) product 7 (116 $\mathrm{mg}, 0.22 \mathrm{mmol}, \mathbf{5 8 \%}$) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.46-7.23$ ($\mathrm{m}, 15 \mathrm{H}$, two isomers), 5.96 (ddd, $J=16.4,10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 5.72 (d, J $=8.9 \mathrm{~Hz}, 0.67 \mathrm{H}$, major isomer), $5.56-5.48(\mathrm{~m}, 0.21 \mathrm{H}$, minor isomer), $5.42(\mathrm{dt}, J=$ $17.3,1.6 \mathrm{~Hz}, 0.75 \mathrm{H}$, major isomer), $5.39-5.31(\mathrm{~m}, 0.29 \mathrm{H}$, minor isomer), 5.23 (dt, J $=10.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomer), $5.11(\mathrm{~s}, 1.71 \mathrm{H}$, major isomer), $5.09(\mathrm{~s}, 0.51 \mathrm{H}$, minor isomer), $4.94-4.54(\mathrm{~m}, 8 \mathrm{H}$, two isomers), 4.36 ($\mathrm{s}, 0.2 \mathrm{H}$, minor isomer), 4.31 (s, 0.79 H , major isomer), 4.14 (ddt, $J=9.2,6.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.86 (ddd, $J=$ $20.0,10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.79-3.65$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 156.71,137.53,137.40,136.59,136.30,128.54,128.50,128.48$, 128.21, 128.18, 128.00, 127.86, 127.82, 127.81, 127.78, 116.52, 115.89, 96.09, 96.00,
95.08, 82.54, 81.47, 77.38, 71.92, 70.56, 70.50, 70.44, 69.94, 69.79, 67.39, 67.06, 66.96, 51.62. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{7} 544.2311$, found 544.2313.
(5R,6R,7R,E)-7-(((benzyloxy)carbonyl)amino)-5,6,8-trihydroxyoct-3-en-1-yl

4-methylbenzenesulfonate (8)

Mixed starting material 7 ($100 \mathrm{mg}, 0.19 \mathrm{mmol}, 1 \mathrm{eq}$) and 4-butenol p-tolyl-sulfonate ($130 \mathrm{mg}, 0.57 \mathrm{mmol}, 3 \mathrm{eq}$) were added simultaneously via syringe to a stirring solution of Grubbs $2^{\text {nd }}$ catalyst ($16 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under nitrogen atmosphere. The flask was allowed to stir at room temperature for 1 day. The reaction mixture was then reduced in volume to 0.5 mL and purified directly by column chromatography (heptane/EtOAc 1:1) to furnish the corresponding mixed ($d r$ 3:1) trans olefin product ($61 \mathrm{mg}, 44 \%$ ($64 \% \mathrm{brsm}$)) as a colorless oil.

To a solution of trans olefin product ($61 \mathrm{mg}, 0.085 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{HCl}\left(35 \%\right.$ aq., 1 mL) in $0^{\circ} \mathrm{C}$. After stirring overnight, the reaction was quenched with NaHCO_{3} (sat. aq. soln., 15 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)$ to furnish desired product 8 (27.3 mg, 67\%, $d r>95: 5$) and undesired product $\mathbf{8 b}(8.5 \mathrm{mg}, 21 \%, d r>95: 5)$. Optical rotation for 8: $[\alpha]_{D}^{20}-4.5$ (c $1.7, \mathrm{CHCl}_{3}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR for 8 ($\mathbf{4 0 0} \mathbf{~ M H z}$, MeOD) $\delta 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.76$ $-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{q}, J=7.7,6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 3.48(\mathrm{dd}, J=6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR for $8(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{MeOD}) \delta 158.8,146.5,138.2,134.7,134.4,131.1,129.5,129.0$, 129.0, 128.9, 127.6, 74.8, 73.1, 71.1, 67.6, 62.3, 55.8, 55.7, 32.9, 21.6. HRMS: (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{~S} 480.1692$, found 480.1690.

2-((2S,3S)-3-((1S,2R,3R)-3-(((benzyloxy)carbonyl)amino)-1,2,4-trihydroxybutyl)o

 xiran-2-yl)ethyl 4-methylbenzenesulfonate (10)

Starting material 8 ($20 \mathrm{mg}, 0.04 \mathrm{mmol}, 1 \mathrm{eq}$) and β-hydroperoxy alcohol $9(8.4 \mathrm{mg}$, $0.06 \mathrm{mmol}, 1.5 \mathrm{eq})$ were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Under a nitrogen atmosphere, $\mathrm{Ti}(\mathrm{OiPr})_{4}(1.2 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added and the reaction mixture was stirred overnight at room temperature. The reaction was then quenched by addition of $\mathrm{NH}_{4} \mathrm{~F}$ (sat. aq. soln., 0.1 mL) and the reaction was stirred vigorously for 1 h . The precipitate was removed by filtration, the filtrate concentrated under reduced pressure and the residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)$ to furnish the corresponding epoxide $10(16.3 \mathrm{mg}, 78 \%, d r>$ 95:5) as a colorless oil. Optical rotation: $[\alpha]_{D}^{20}-10.9$ (c 1.1, $\mathbf{C H C l}_{3}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, MeOD) $\delta 7.89-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.18-$ $5.02(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=6.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=7.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=6.7,4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (dd, $J=5.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.03$ (dtd, $J=14.0,6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-$ $1.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{M e O D}\right) \delta 157.5,145.2,136.9,132.9,129.7$, 128.1, 127.6, 127.5, 70.6, 70.0, 67.5, 66.2, 61.0, 58.1, 54.1, 53.6, 31.2, 20.2. HRMS: (ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{9} \mathrm{~S} 496.1641$, found 496.1645.
(+)-Alexine (3)

$\mathrm{Pd} / \mathrm{C}(16 \mathrm{mg}, 10 \mathrm{wt} . \%, 0.1 \mathrm{eq})$ was added to $\mathbf{1 0}(76 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{EtOH}(2$ $\mathrm{mL})$. The reaction mixture was stirred under an atmosphere of H_{2} at room temperature for 3 h . The reaction was filtered over Celite and the solvent was removed in vacuo. The crude intermediate was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{iPrNH}_{2}$ 10:10:1) to afford (+)-Alexine $3(22 \mathrm{mg}, 76 \%)$ as a white solid. mp ($160-162^{\circ} \mathrm{C}$). Optical rotation: $[\alpha]_{D}^{20}+42.1$ (c $\left.0.3, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{D}_{\mathbf{2}} \mathbf{O}\right) \delta 4.49-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=7.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.80(\mathrm{~m}$, 2 H), 3.77 (dd, $J=9.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (dd, $J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02-2.75$ (m, $3 \mathrm{H}), 2.18$ (dtd, $J=12.5,6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddt, $J=12.3,10.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D}_{\mathbf{2}} \mathbf{O}$) $\delta 76.3,76.2,70.2,69.9,64.2,59.1,45.6,34.2$ HRMS:
(ESI/TOF-Q) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$ 190.1079, found 190.1087.

6. NMR spectrum

Starting material (method 1,1a, 1c-d, 1i-j, 11-n)
Methyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3a)
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$
(

Methyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1a) ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR

Cyclohexyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3c)
${ }^{1} \mathrm{H}$-NMR

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1c)
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Benzyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3d)
${ }^{1} \mathrm{H}$-NMR
(1)
${ }^{13} \mathrm{C}$-NMR

Benzyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1d) ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Methyl (E)-N-((benzyloxy)carbonyl)-N-(2-methylbut-2-enoyl)glycinate (S3i)
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR
(

Methyl (\boldsymbol{E})-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1i)
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$
(

Methyl N-((benzyloxy)carbonyl)-N-methacryloylglycinate (S3j)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR

[^0]Methyl 2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxopent-4-enoate (1j)
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Methyl N-((benzyloxy)carbonyl)-N-cinnamoylglycinate (S3I)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-3-oxo-5-phenylpent-4-enoate (11) ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Methyl (E)-N-((benzyloxy)carbonyl)-N-(3-(4-bromophenyl)acryloyl)glycinate (S3m)
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Methyl

(E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-oxopent-4-enoate (1m) ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

[^1]Methyl N-((benzyloxy)carbonyl)-N-(hex-2-ynoyl)glycinate (S3n)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Methyl 2-(((benzyloxy)carbonyl)amino)-3-oxooct-4-ynoate (1n)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Method 2 (1b, 1e, 1h, 1k, 1o)
Ethyl (E)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1b)
${ }^{1} \mathrm{H}$-NMR

1b
${ }^{13} \mathrm{C}-\mathrm{NMR}$

Ethyl 2-((tert-butoxycarbonyl)amino)-5-methyl-3-oxohex-4-enoate (1e)
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

1e

Ethyl (E)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1h)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

1h

[^2]Ethyl (4E,6E)-2-((tert-butoxycarbonyl)amino)-3-oxoocta-4,6-dienoate (1k)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR

[^3]6-Ethyl 1-methyl (E)-5-(((benzyloxy)carbonyl)amino)-4-oxohex-2-enedioate (10) ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR

Method 3(1f. 1g)

Methyl 2-acetamido-5-methyl-3-oxohex-4-enoate (1f)
${ }^{1} \mathrm{H}$-NMR
(
${ }^{13} \mathrm{C}-\mathrm{NMR}$

[^4]
Methyl 2-benzamido-5-methyl-3-oxohex-4-enoate (1g)

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$

[^5]NMR Specturm of product ($\mathbf{2 a}-2 \mathrm{~m}, 4,5,7,8,10$ amd (+)-Alexine (3))
Methyl 2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhexanoate (4)

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2a)

Ethyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2b)

Cyclohexyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2c)

[^6]Benzyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2d)

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \text { f1 }\end{array}$

Ethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2e)

Methyl (2S,3S)-2-acetamido-3-hydroxy-5-methylhex-4-enoate (2f)

2f

2f

Methyl (2S,3S)-2-benzamido-3-hydroxy-5-methylhex-4-enoate (2g)

Methyl (2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylhex-4-enoate (2i)

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylpent-4-enoate (2j)

Methyl (2S,3S,4E,6E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxyocta-4,6-dienoate (2k)

Methyl (2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-phenylpent-4-enoate (2l)

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-hydroxypent-4-enoate (2m)

Benzyl

((5S,6R)-5-(2-methylprop-1-en-1-yl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)carbamate (5)

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Benzyl

((5R,6R)-5-((R)-1-hydroxyallyl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)car bamate (7)

[^7](5R,6R,7R,E)-7-(((benzyloxy)carbonyl)amino)-5,6,8-trihydroxyoct-3-en-1-yl 4-methylbenzenesulfonate (8)

2-((2S,3S)-3-((1S,2R,3R)-3-(((benzyloxy)carbonyl)amino)-1,2,4-trihydroxybutyl)o xiran-2-yl)ethyl 4-methylbenzenesulfonate (10)

$\begin{array}{lllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
(+)-Alexine (3)

(+)-Alexine

7. HPLC spectrum of products ($2 \mathrm{a}-2 \mathrm{~g}, 2 \mathrm{i}-2 \mathrm{~m}$)

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2a)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	48.804	46791.7	729.7	0.9921	49.338	0.647		
2	55.568	48046.8	567.6	1.2796	50.662	0.477		

Ethyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2b)

2b

\#	Time	Area	Height	Width	Area\%	
1	36.954	9172.1	170.3	0.8245	49.880	0.828
2	40.254	9216.3	153	0.9227	50.120	0.774

	Time	Area	Height	Width		Area\%		Symmetry
1	38.255	455.6	9.5	0.7436	2.515	0.976		
2	41.27	17659.9	296.2	0.9937	97.485	0.644		

Cyclohexyl

(2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2c)

\#	Time	Area	Height	Width	Area\%	
Symmetry 1 15.513 18429.7 852.1 0.3323 48.406 0.778 2 18.32 19643.6 702 0.4305						

	Time	Area	Height	Width		Area\%		Symmetry
1	15.504	711	32.7	0.3373	3.053	0.888		
2	18.259	22581.6	830.1	0.4214	96.947	0.711		

Benzyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2d)

2d

	Time	Area	Height	Width		Area\%		Symmetry
1	16.076	7996	388.7	0.316	49.656	0.878		
2	18.045	8106.9	340.6	0.3657	50.344	0.847		

	Time	Area	Height	Width		Area\%		Symmetry
1	16.076	1138.9	56.7	0.3062	3.541	0.957		
2	17.986	31028	1278.7	0.3751	96.459	0.764		

Ethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2e)

2e

	Time	Area	Height	Width		Area\%		Symmetry
1	15.394	2362.3	111.1	0.328	50.601	0.825		
2	17.297	2306.2	90.8	0.3925	49.399	0.823		

\#	Time	Area	Height	Width		Area\%		Symmetry
1	15.34	4922.4	233.8	0.3296	96.441	0.808		
2	17.293	181.6	5.4	0.4849	3.559	0.866		

Methyl (2S,3S)-2-acetamido-3-hydroxy-5-methylhex-4-enoate (2f)

$2 f$

\#	Time	Area	Height	Width	Area\%	Symmetry
1	5.021	631.2	66.3	0.1588	50.350	0.727
2	5.392	622.5	62.1	0.149	49.650	0.728

$\#$	Time	Area	Height	Width	Area\% $\%$ Symmetry	
1	5.111	9214.6	1062.3	0.1446	81.740	0.709
2	5.507	2058.4	215.9	0.1432	18.260	0.71

Methyl (2S,3S)-2-benzamido-3-hydroxy-5-methylhex-4-enoate (2g)

2g

\#	Time	Area	Height	Width		Area\% $\%$ Symmetry	
1	31.43	39425	784.3	0.7784	49.291	0.607	
2	33.092	40559.6	759	0.8074	50.709	0.554	

\#	Time	Area	Height	Width		Area\% $\%$ Symmetry	
1	32.141	28547.4	592.7	0.7299	83.407	0.604	
2	34.092	5679.4	106.5	0.7983	16.593	0.558	

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylhex-4-enoate (2i)

$2 i$

$\#$	Time	Area	Height	Width		Area\% Symmetry	
1	38.465	334.9	6.3	0.8215	1.865	0.942	
2	44.404	17624.1	252.4	1.0626	98.135	0.469	

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylpent-4-enoate (2j)

2j

\#	Time	Area	Height	Width		Area\% $\%$ Symmetry	
1	25.899	2677.7	57.9	0.732	47.953	0.937	
2	32.682	2906.3	46.7	0.9746	52.047	0.948	

\#	Time	Area	Height	Width	Area\% $\%$ Symmetry	
1	25.968	63	1.3	0.6704	1.503	0.805
2	32.566	4129.6	67.8	0.9511	98.497	0.896

Methyl (2S,3S,4E,6E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxyocta-4,6-dienoate (2k)

2k

\#	Time	Area	Height	Width	Area\%	Symmetry
1	12.793	13160.5	808.2	0.248	48.921	0.724
2	20.012	13740.8	517.4	0.4018	51.079	0.688

\#	Time	Area	Height	Width		Area\% Symmetry	
1	13.106	24839.1	1586.6	0.2386	92.279	0.734	
2	20.358	2078.4	84.4	0.4106	7.721	0.867	

Methyl (2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-phenylpent-4-enoate (21)

21

\#	Time	Area	Height	Width		Area\% $\%$ Symmetry	
1	74.76	7304	66.8	1.6764	49.871	0.807	
2	85.43	7341.8	58.8	1.8725	50.129	0.793	

\#	Time	Area	Height	Width		Area\% $\%$ Symmetry	
1	74.889	7506.6	68.8	1.6616	11.606	0.816	
2	84.482	57171.8	407.3	2.0657	88.394	0.503	

Methyl(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-hydroxypent-4-e noate (2m)

\#	Time	Area	Height	Width		Area\% Symmetry	
1	121.454	6363.7	37.6	2.5516	50.030	0.809	
2	141.85	6356.1	32.4	2.9478	49.970	0.773	

\#	Time	Area	Height	Width		Area\% Symmetry	
1	121.375	5714.5	33.5	2.4617	9.870	0.787	
2	141.011	52182.7	255.5	3.1265	90.130	0.637	

1. Seashore-Ludlow, B.; Villo, P.; Somfai, P., Chemistry - A European Journal 2012, 18, 7219-7223.
2. Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K., The Journal of Organic Chemistry 2008, 73, 5147-5150.

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]:

[^3]:

[^4]:

[^5]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^6]:

[^7]: $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

