Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Enantioselective Synthesis of anti-3-Alkenyl-2-amido-3-hydroxy esters: Application to the Total Synthesis of (+)-Alexine

Lu Yu and Peter Somfai*

Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 22100, Lund, Sweden

1.	General	2
2.	Typical procedure for the ATH/DKR reaction	2
3.	Synthesis and characterization of starting materials	2
4.	Characterization data for products (2a-2m)	10
5.	Experimental procedures and characterization of products (5-	10
an	d (+)-Alexine)	15
6.	NMR spectrum	20
7.	HPLC spectrum of products (2a-2g, 2i-2m)	61

1. General

¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet), coupling constant (Hz), integration. Data for ${}^{13}C$ NMR are reported in terms of chemical shift (δ , ppm). Optical rotations were determined on a Perkin Elmer Polarimeter 343 using the sodium D line (589 nm) at the indicated temperature. Analytical thin layer chromatography was performed on Merck silica gel 60 F254 plates; the plates were visualized with UV light or potassium permanganate stain. Flash chromatography was conducted on silica gel (230-400 mesh particle size). Air and moisture sensitive reactions were carried out in flame-dried, septum-capped flasks under an atmospheric pressure of nitrogen. Melting points were measured on a BÜCHI B-540 melting point apparatus and are uncorrected. High resolution mass spectra (HRMS) were recorded on Waters XEVO-G2 QTOF with electrospray ionization (ESI).

2. Typical procedure for the ATH/DKR reaction

The catalyst was prepared by stirring Dichloro(mesitylene)ruthenium(II) dimer (2.5 mol %) and the ligand (S,S-DPAE) (5 mmol %) in *i*-PrOH (0.3 mL) at 80°C for 1 h. After letting the catalyst mixture cool to ambient temperature, the catalyst was transferred to a vial containing the transfer-hydrogenation substrate (1 eq). Then, HCOOH (1.5 eq), Et₃N (3 eq) and corresponding dioxane (1 mL) was added to this system and stirred at room temperature for corresponding times. Then the mixture was purified by flash chromatography on silica to give the product.

3. Synthesis and characterization of starting materials

Methods 1 (1a, 1c-d, 1i-j, 1l-n)

Methyl 2-(benzyloxycarbonylamino)ethanoate (S2) was synthesized according to the known procedure.¹

Methyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3a)

To a flask containing protected glycine ester S2 (1.5 g, 6.7 mixture was stirred at -78°C for 1.5 hours. Then the 3,3-dimethylacryloyl chloride (1.1 mL, 8.7 mmol, 1.3 eq) was added to the reaction flask via cannula and the reaction mixture was stirred at -78°C for an hour and then allowed to warm to room temperature. After diluting with EtOAc (40 mL), the mixture was washed with NH₄Cl (sat. aq. soln., 40 mL) and brine (40 mL). The combined organic layers were dried over Na₂SO₄ and then filtered and concentrated under reduced pressure. The resulting oil was subjected to column chromatography (*n*-heptane/EtOAc 5:1) to yield the desired product **S3a** (1.2 g, 3.9 mmol, 58%) as a clear oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 6.55 (q, *J* = 1.3 Hz, 1H), 5.22 (s, 2H), 4.50 (s, 2H), 3.67 (s, 3H), 2.08 (d, *J* = 1.3 Hz, 3H), 1.90 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.8, 155.5, 153.8, 135.1, 128.8, 128.7, 128.4, 119.1, 68.9, 52.4, 45.2, 27.7, 21.2. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₁₆H₁₉NO₅ 328.1161, found 328.1160.

Methyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1a)

O O NHCbz 1a To a solution of **S3a** (1.2 g, 4 mmol) in THF (30 mL) was added DMPU (1 mL, 8 mmol) and the mixture was cooled to -78° C. Then LiHMDS (1M solution in THF, 8 mL, 8 mmol) was added drop wise to the reaction flask. The reaction was stirred for 2.5 hours at -78° C and quenched with NH₄Cl (sat. aq. soln., 30 mL). The solution was transferred to a separatory

funnel and the layers were separated. The aqueous layer was EtOAc (3 × 40 mL) and the combined organic layers were washed with NaHCO₃ (sat. aq. soln., 40 mL) and brine (sat. aq. soln. 40 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting oil was subjected to flash chromatography (*n*-heptane/EtOAc 5:1) to yield the desired substrate **1a** (0.63 g, 52%) as a clear oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.47 – 7.27 (m, 5H), 6.35 (p, *J* = 1.4 Hz, 1H), 6.10 (d, *J* = 6.9 Hz, 1H), 5.12 (d, *J* = 2.4 Hz, 2H), 5.06 (d, *J* = 6.9 Hz, 1H), 3.78 (s, 3H), 2.20 (d, *J* = 1.2 Hz, 3H), 1.97 (d, *J* = 1.3 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 188.2, 167.6, 162.6, 155.7, 136.2, 128.6, 128.3, 128.2, 120.3, 67.3, 64.4, 53.2, 28.3, 21.9. **HRMS**: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₁₆H₁₉NO₅ 328.1161, found 328.1163.

Cyclohexyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3c)

Prepared from corresponding ester² (0.486 g, 1.7 mmol) to give **S3c** (0.41 g, 1.1 mmol, 65%) as clear oil following the procedure for the synthesis of **S3a**. ¹H **NMR (400 MHz, CDCl3)** δ 7.47 – 7.11 (m, 5H), 6.54 (p, J = 1.3 Hz, 1H), 5.16 (s, 2H), 4.73 (tt, J = 8.6, 3.7 Hz, 1H), 4.43 (s, 2H), 2.03 (d, J = 1.5 Hz, 3H), 1.85 (d, J =

1.6 Hz, 3H), 1.79 - 1.54 (m, 4H), 1.54 - 1.08 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 167.4, 154.4, 153.5, 134.8, 128.4, 128.3, 128.0, 119.0, 73.4, 68.4, 45.2, 31.1, 27.2, 25.1, 23.3, 20.7. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₂₁H₂₇NO₅ 396.1787, found 396.1789.

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1c)

Prepared from **S3c** (0.41 g, 1.1 mmol) to give **1c** (0.29 g, 0.8 mmol, 73%) as clear oil following the procedure for the synthesis of **1a**. **¹H NMR** (**400 MHz, CDCl**₃) δ 7.63 – 7.03 (m, 5H), 6.38 (p, *J* = 1.3 Hz, 1H), 6.13 (d, *J* = 7.0 Hz, 1H), 5.10 (s, 2H), 5.02 (d, *J* = 7.0 Hz, 1H), 4.86 (tq, *J* = 8.4, 3.7 Hz, 1H), 2.17 (d, *J* = 1.4 Hz, 3H), 1.94 (d, *J* = 1.4

Hz, 3H), 1.87 - 1.57 (m, 4H), 1.56 - 1.15 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 166.2, 161.3, 155.5, 136.2, 128.4, 128.0, 128.0, 120.4, 74.6, 67.0, 64.67, 31.2, 31.0, 28.0, 25.2, 23.3, 23.2, 21.5. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₂₁H₂₇NO₅ 396.1787, found 396.1791.

Benzyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3d)

Prepared from corresponding ester² (0.58 g, 1.9 mmol) to give S3d (0.38 g, 1 mmol, 53%) as clear oil following the procedure for the synthesis of S3a. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dddd, J = 8.9, 7.9, 5.0, 2.9 Hz, 10H), 6.61 (p, J = 1.3 Hz, 1H), 5.18 (s, 2H), 5.13 (s, 2H), 4.57 (s, 2H), 2.10 (d, J = 1.5 Hz, 3H), 1.90 (d, J = 1.5 Hz, 3H). ¹³C NMR

(**100 MHz, CDCl**₃) δ 168.6, 167.4, 155.0, 153.5, 135.3, 134.8, 128.5, 128.4, 128.4, 128.2, 128.0, 118.9, 68.5, 66.8, 45.1, 27.4, 20.9. **HRMS**: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₃NO₅ 404.1474, found 404.1477.

Benzyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1d)

Prepared from S3d (0.41 g, 1.1 mmol) to give 1c (0.29 g, 0.8 mmol, 73%) as white solid following the procedure for the synthesis of 1a. Melting point: 42-44 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.05 (m, 10H), 6.31 (p, *J* = 1.3 Hz, 1H), 6.19 (d, *J* = 6.9 Hz, 1H), 5.31 (d, *J* = 12.2 Hz, 1H), 5.23 – 4.94 (m,

4H), 2.16 (d, J = 1.3 Hz, 3H), 1.88 (d, J = 1.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.9, 166.9, 162.2, 155.6, 136.2, 135.0, 128.6, 128.5, 128.3, 128.2, 128.1, 120.3, 67.8, 67.2, 64.5, 28.1, 21.7. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₂₂H₂₃NO₅ 404.1474, found 404.1476.

Methyl (E)-N-((benzyloxy)carbonyl)-N-(2-methylbut-2-enoyl)glycinate (S3i)

Prepared from S2 (2 g, 9 mmol) to give S3i (1.5 g, 5 mmol, 56%) as clear oil following the procedure for the synthesis of S3a. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.27 (m, 5H), 6.13 (qq, J = 6.9, 1.4 Hz, 1H), 5.18 (s, 2H), 4.44 (s, 2H), 3.71 (s, 3H), 1.78 (p, J = 1.2 Hz, 3H), 1.60 (dq, J = 7.0, 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) ¹³C NMR (100 MHz,

CDCl₃) δ 174.5, 169.4, 154.2, 134.8, 134.1, 131.5, 128.8, 128.7, 128.5, 69.0, 52.4,

46.2, 13.8, 13.4. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₆H₁₉NO₅ 328.1161, found 328.1159.

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1i)

Prepared from S3i (1.3 g, 4.3 mmol) to give 1d (1.03 g, 3.4 mmol, 79%) as white solid following the procedure for the synthesis of 1a. mp (39-41°C) ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.27 (m, 5H), 7.13 (qd, J = 6.9, 1.5 Hz, 1H), 6.07 (d, J = 8.1 Hz, 1H), 5.76 (d, J = 8.1 Hz, 1H), 5.12 (s, 2H), 3.73 (s, 3H), 2.02 – 1.89 (m, 3H), 1.89 – 1.72 (m, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 192.1, 167.9, 155.7, 143.4, 136.1, 136.1, 128.7, 128.4, 128.2, 67.4, 58.0, 53.3, 15.5, 11.5. **HRMS**: (ESI/TOF-Q) m/z: $[M + Na]^+$ calcd for C₁₆H₁₉NO₅ 328.1161, found 328.1165.

Methyl N-((benzyloxy)carbonyl)-N-methacryloylglycinate (S3j)

Prepared from S2 (1.5 g, 6.7 mmol) to give S3j (1.1 g, 3.8 OMe mmol, 57%) as clear oil following the procedure for the synthesis of S3a. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.28 (m, 5H), 5.36 (p, J = 1.0 Hz, 1H), 5.20 (d, J = 3.2 Hz, 3H), 4.46 (s, 2H), 3.71 (s, 3H), 1.94 (dd, J = 1.6, 1.0 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 173.7, 169.1, 154.0, 142.1, 134.6, 128.9, 128.7, 128.7, 128.6, 118.0, 69.2, 52.5, 45.8, 19.1. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₅H₁₇NO₅ 314.1004, found 314.1007.

Methyl 2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxopent-4-enoate (1j)

Prepared from **S3i** (1.1 g, 3.8 mmol) to give **1c** (0.6 g, 2.1 mmol, 55%) as clear oil following the procedure for the synthesis of 1a. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 5H), 6.34 (s, 1H), 6.11 – 5.95 (m, 2H), 5.75 (d, J = 8.0 Hz, 1H), 5.12 (s, 2H), 3.75 (s, 3H), 1.93 (t, J = 1.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃)

192.67, 167.47, 155.64, 142.03, 136.06, 129.56, 128.67, 128.39, 128.24, 67.50, 58.57, 53.36, 17.86. HRMS: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₁₅H₁₇NO₅ 314.1004, found 314.1001.

Methyl N-((benzyloxy)carbonyl)-N-cinnamoylglycinate (S3l)

Prepared from S2 (2 g, 9 mmol) to give S3I (1.82g, 5.2 mmol, 57%) as yellowish oil following the procedure for the synthesis of S3a. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 15.6 Hz, 1H), 7.60 (d, J = 15.6 Hz, 1H), 7.48 (dd, *J* = 7.4, 2.2 Hz, 2H), 7.40 – 7.33 (m, 8H), 5.28 (s, 2H), 4.60 (s, 2H), 3.69 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 169.1, 167.9, 153.7, 145.2, 134.8, 134.7, 130.3, 128.8, 128.8, 128.4, 128.3, 120.0, 69.1, 52.3, 45.6. **HRMS**: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₂₀H₁₉NO₅ 376.1161, found 376.1159.

Methyl (E)-2-(((benzyloxy)carbonyl)amino)-3-oxo-5-phenylpent-4-enoate (11)

Prepared from S3l (1.8 g, 5.2 mmol) to give 1e (1 g, 2.9 mmol, 56%) as yellowish solid following the procedure for the synthesis of 1a. mp (84-87°C). Compound 1l exists as keto/enol tautomers as seen by ¹H and ¹³C NMR. ¹H NMR (400 MHz, CDCl₃) δ 12.26 (s, 0.7H), 7.85 (d, *J* = 15.9 Hz, 0.3H), 7.66 – 7.32 (m, 9H), 7.05 (d, *J* = 16.0 Hz,

0.5H), 6.93 (d, J = 16.0 Hz, 0.5H), 6.18 (d, J = 7.2 Hz, 0.3H), 5.70 (s, 0.5H), 5.42 (d, J = 7.2 Hz, 0.3H), 5.30 – 5.09 (m, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 167.1, 155.6, 146.6, 139.0, 136.3, 136.0, 133.8, 131.5, 129.7, 129.1, 128.9, 128.8, 128.6, 128.3, 128.2, 128.1, 128.0, 121.6, 117.2, 67.4, 62.9, 53.4. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₂₀H₁₉NO₅ 376.1161, found 376.1157.

Methyl (E)-N-((benzyloxy)carbonyl)-N-(3-(4-bromophenyl)acryloyl)glycinate

(S3m)

Prepared from S2 (2 g, 9 mmol) to give S3m (1.8 g, 4.2 mmol, 46%) as yellow solid following the procedure for the synthesis of S3a. mp (104-106°C). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 15.6 Hz, 1H), 7.57 (d, *J* = 15.6 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.37 (d, *J* = 2.0 Hz,

5H), 7.32 – 7.26 (m, 2H), 5.27 (s, 2H), 4.59 (s, 2H), 3.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.7, 153.7, 143.6, 134.7, 133.8, 132.1, 129.7, 128.9, 128.8, 128.5, 124.5, 120.8, 77.5, 77.2, 76.8, 69.2, 52.4, 45.6. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₂₀H₁₈NO₅Br 454.0266, found 454.0270.

Methyl

(E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-oxopent-4-enoate (1m)

Prepared from **S3m** (1.2 g, 2.8 mmol) to give **1f** (0.65 g, 1.5 mmol, 54%) as yellow solid following the procedure for the synthesis of **1a**. mp (113-116°C). Compound 1m exists as keto/enol tautomers as seen by ¹H and ¹³C NMR. ¹H NMR (**400** MHz, CDCl₃) δ 12.23 (s, 0.5 H), 7.76 (d, *J* = 15.9 Hz, 0.5 H), 7.62 –

7.52 (m, 1H), 7.52 – 7.21 (m, 8H), 7.03 (d, J = 16.0 Hz, 0.5 H), 6.92 (t, J = 16.7 Hz, 0.5 H), 6.19 (d, J = 7.2 Hz, 0.4 H), 5.79 (s, 0.5 H), 5.41 (d, J = 7.2 Hz, 0.4 H), 5.32 – 5.08 (m, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 167.1, 155.7, 145.1, 137.5, 136.4, 136.1, 132.8, 132.5, 132.1, 130.3, 129.4, 128.7, 128.4, 128.3,

128.2, 126.0, 122.1, 117.9, 67.5, 63.1, 53.5. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₂₀H₁₈NO₅Br 454.0266, found 454.0261.

Methyl N-((benzyloxy)carbonyl)-N-(hex-2-ynoyl)glycinate (S3n)

δ 168.4, 153.0, 152.6, 134.6, 128.8, 128.7, 128.7, 128.5, 128.4, 128.4, 98.3, 75.1, 69.2, 52.4, 45.0, 44.9, 21.2, 21.0, 13.5. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₇H₁₉NO₅ 340.1161, found 340.1158.

Methyl 2-(((benzyloxy)carbonyl)amino)-3-oxooct-4-ynoate (1n)

Prepared from **S3h** (0.45 g, 1.4 mmol) to give **1h** (0.22 g, 0.7 mmol, 50%) as white solid following the procedure for the synthesis of **1a**. mp (97-100°C). ¹**H NMR** (**400 MHz, CDCl₃**) δ 7.48 – 7.27 (m, 5H), 5.91 (q, *J* = 1.6 Hz, 1H), 5.36 (d, *J* = 12.3 Hz, 1H), 5.19 (d, *J* = 12.3 Hz, 1H),

5.02 (dt, J = 1.5, 0.7 Hz, 1H), 3.62 (s, 3H), 2.38 – 2.21 (m, 2H), 1.72 – 1.44 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.0, 160.0, 135.0, 128.5, 128.3, 128.1, 122.6, 68.0, 65.8, 52.9, 30.5, 20.3, 13.5. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₇H₁₉NO₅ 340.1161, found 340.1165.

Methods 2 (1b, 1e, 1h, 1k, 1o)

Diethyl 2-(*tert***-butoxycarbonylamino**)**propandioate** (**S4**) was synthesized according to known procedure from commercially available **diethyl aminopropanedioate**.¹

2-(*tert***-butoxycarbonylamino)-3-ethoxy-3-oxopropanoic acid** (**S5**) was synthesized according to known procedure from **S4**.¹

Ethyl (E)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1b)

To a stirred mixture of Cbz-protected malonate S5 (10 g, 35.6 mmol, 1 eq) and MgCl₂ (20.4 g, 213.5 mmol, 6 eq) in THF (100 mL) was added Et₃N (12.5 mL, 89 mmol, 2.5 eq) at 0°C. The resulting mixture was stirred at 0°C for an additional 2 hours. Crotonoyl chloride (5 mL, 42.7 mmol, 1.2 equiv) was added to the malonate mixture in THF (10 mL) at 0°C. Then

the reaction was brought to rt and stirred 5 days. After diluting with EtOAc (100 mL), the mixture was washed with NH₄Cl (sat. aq. soln., 100 mL) and brine (100 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica (*n*-heptane/EtOAc 5:1) to give the product (8.2 g, 25.7 mmol, 72%) as a yellowish oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.33 (dtd, J = 12.5, 4.4, 1.7 Hz, 5H), 6.37 (p, J = 1.4Hz, 1H), 6.11 (d, J = 7.0 Hz, 1H), 5.12 (s, 2H), 5.03 (d, J = 7.0 Hz, 1H), 4.34 – 4.12 (m, 2H), 2.19 (d, J = 1.3 Hz, 3H), 1.96 (d, J = 1.3 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 167.0, 162.1, 155.6, 136.3, 128.6, 128.3, 128.1, 120.3, 67.2, 64.6, 62.4, 28.2, 21.8, 14.1. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₇H₂₁NO₅ 342.1317, found 342.1320.

Ethyl 2-((tert-butoxycarbonyl)amino)-5-methyl-3-oxohex-4-enoate (1e)

Prepared from Boc-protected S5(1.2 g, 4.8 mmol) to give 1e (0.88 g, 3.1 mmol, 65%) as clear oil following the procedure for the synthesis of 1b. ¹H NMR (400 MHz, CDCl₃) δ 6.49 – 6.16 (m, 1H), 5.83 (d, J = 7.1 Hz, 1H), 4.97 (d, J = 7.0 Hz, 1H), 4.41 - 4.06 (m, 2H), 2.21 - 2.11 (m, 3H), 1.93 (dd, J =18.1, 1.3 Hz, 3H), 1.44 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 189.0, 167.5, 161.6, 155.1, 120.5, 80.4, 64.5, 62.2, 28.4, 28.3, 28.2, 21.7, 14.2. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₄H₂₃NO₅ 308.1474, found 308.1477.

Ethyl (E)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1h)

. NHCbz

1h

Prepared from Cbz-protected S5(1.2 g, 4.8 mmol) to give 1h (1.0 g, 3.3 mmol, 69%) as clear oil following the procedure for the synthesis of 1b. Compound 1h decomposed even stored in -20 °C for 2 days, and exists as keto/enol tautomers as seen by ¹H

and ¹³C NMR. ¹H NMR (400 MHz, CDCl₃) δ 12.07 (s, 0.2H), 7.06 (dq, J = 15.6, 6.9 Hz, 0.7H), 6.63 (dq, J = 15.6, 6.9 Hz, 0.3H), 6.31 (dq, J = 15.5, 1.6 Hz, 1H), 5.77 (d, J = 7.4 Hz, 0.6H), 5.49 (s, 0.3H), 5.11 (d, J = 7.4 Hz, 0.7H), 4.15 (tddd, J = 14.1, 10.8, 6.2, 3.7 Hz, 2H), 1.84 (ddd, J = 23.2, 6.9, 1.7 Hz, 3H), 1.37 (d, J = 13.8 Hz, 9H), 1.19 (dt, J = 10.3, 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 171.3, 166.8, 154.9, 147.1, 146.1, 137.7, 127.7, 126.1, 121.6, 80.2, 62.2, 62.1, 60.9, 28.2, 28.1, 18.6, 18.6, 18.5, 14.1, 14.0. **HRMS**: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₁₃H₂₁NO₅ 294.1317, found 294.1311.

Ethyl (4E,6E)-2-((tert-butoxycarbonyl)amino)-3-oxoocta-4,6-dienoate (1k)

(m, 3.6H), 5.25 (d, J = 7.2 Hz, 0.7H), 5.15 (d, J = 18.4 Hz, 2H), 4.31 – 4.08 (m, 2H), 1.87 (dd, J = 20.7, 6.5 Hz, 3H), 1.38 – 1.09 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 166.8, 155.6, 146.9, 143.8, 140.9, 139.5, 137.9, 136.5, 136.2, 131.1, 130.2, 128.6, 128.3, 128.2, 127.7, 123.1, 120.6, 118.6, 67.3, 62.9, 62.5, 61.2, 32.0, 29.1, 22.8, 19.1, 18.8, 14.3, 14.2, 14.1. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₈H₂₁NO₅ 354.1317, found 354.1320.

6-Ethyl 1-methyl (E)-5-(((benzyloxy)carbonyl)amino)-4-oxohex-2-enedioate (10)

Prepared from Cbz-protected **S5**(1.5 g, 5.3 mmol) to give **10** (1.35 g, 3.9 mmol, 70%) as white solid following the procedure for the synthesis of **1b**. mp (90-93°C). Compound **1o** exists as keto/enol tautomers as seen by ¹H and ¹³C NMR.¹H NMR (400 MHz, CDCl₃) δ 11.95 (s,

1H), 7.47 (d, J = 15.6 Hz, 1H), 7.43 – 7.27 (m, 5H), 6.69 (d, J = 15.5 Hz, 1H), 5.73 (s, 1H), 5.15 (d, J = 17.2 Hz, 2H), 4.26 (d, J = 7.9 Hz, 2H), 3.79 (s, 3H), 1.45 – 0.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 136.1, 133.1, 128.7, 128.4, 128.3, 126.9, 100.1, 67.7, 62.0, 52.2, 14.2. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₁₇H₁₉NO₇ 372.1059, found 372.1058.

Methods 3 (1f, 1g)

Methyl 2-acetamido-5-methyl-3-oxohex-4-enoate (1f)

To a flask was added *t*-BuOK (0.71 g, 6.33 mmol, 1.5 eq) and THF (15 mL) and cool to -78° C. Benzophenone glycine imine **S6** (1g, 4.2 mmol, 1 eq) in THF (15 mL) was then added via cannula. The reaction was stirred at -78° C for 1 hour and was then transferred to the flask containing the acid chloride (1.2

mL, 10.5 mmol, 2.5 eq) via cannula. The reaction was stirred for an additional 1 hour at -78°C and then HCl (1M aq. 30 mL) was added and the reaction was warmed to ambient temperature and stirred overnight and then concentrated to dryness. The crude material was dissolved in H₂O and washed Et₂O (3×30 mL). The aqueous layer was then concentrated and azeotroped two times with MeOH. At this point the crude mixture was re-suspended in anhydrous MeOH and filtered to remove KCl. The filtrate was concentrated and carried on to the next step without further purification.

The crude amine salt was dissolved in THF (30 mL) and cooled to 0°C. Acetic anhydride (0.52 mL, 5.48 mmol, 1.3 eq) was then added followed by triethylamine (0.76 mL, 5.48 mmol, 1.3 eq). The reaction was warmed to rt and then stirred overnight. The mixture was then diluted with EtOAc (30 mL) and H₂O (30 mL). The aqueous layer was EtOAc (3 × 30 mL) and the combined organic layers were dried over Na₂SO₄. The solution was filtered and concentrated to yield an oil which was then subjected to flash chromatography (*n*-heptane/EtOAc 3:1) to give product **1f** (0.47g, 2.2 mmol, 52%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.95 (d, *J* = 6.8 Hz, 1H), 6.26 (p, *J* = 1.3 Hz, 1H), 5.14 (d, *J* = 6.6 Hz, 1H), 3.68 (s, 3H), 2.09 (d, *J* = 1.4 Hz, 3H), 1.98 (s, 3H), 1.88 (d, *J* = 1.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 169.9, 167.4, 162.2, 120.3, 62.9, 52.9, 28.1, 22.6, 21.5. HRMS: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₁₀H₁₅NO₄ 236.0899, found 236.0901.

Methyl 2-benzamido-5-methyl-3-oxohex-4-enoate (1g)

Prepared from benzophenone glycine imine **S6** (1 g, 4.2 mmol) to give **1g** (0.73 g, 2.7 mmol, 63%) as colorless oil following the procedure for the synthesis of **1f**. ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.87 (dq, J = 7.1, 1.5 Hz, 2H), 7.58 – 7.50 (m, 1H), 7.46 (ddd, J = 8.5, 6.6, 1.6 Hz, 2H), 6.45 (p, J = 1.4 Hz, 1H), 5.39 (dd, J = 6.3, 1.5 Hz, 1H), 3.82 (d, J = 1.6 Hz, 3H), 2.24 (d, J = 1.5 Hz, 3H), 2.00 (d, J = 1.5 Hz, 3H). ¹³**C NMR** (**100 MHz**,

CDCl₃) δ 188.3, 167.3, 166.7, 162.7, 133.1, 131.9, 129.9, 128.5, 128.2, 127.2, 120.2, 63.3, 53.0, 28.1, 21.6. **HRMS**: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₁₅H₁₇NO₄ 298.1055, found 298.1059.

Characterization data for products (4, 2a-2m)

Methyl 2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhexanoate (4)

Prepared from **1a** (61.6 mg, 0.2 mmol) to give the over-reduction product **4** (2.5 mg, 3%) as a colorless oil. ¹H **NMR (400 MHz, CDCl₃)** δ 7.42-7.29 (m, 5H), 5.69 (d, J=6.8Hz, 1H), 5.12 (s, 2H), 4.44 (d, J=4.6Hz, 1H), 4.01 (s, 1H), 3.78 (s, 3H), 2.47 (s, 1H), 1.90-1.75 (m, 1H), 1.50-1.38 (m,

1H), 1.30-1.13 (m, 1H), 0.92 (dd, J=19.1Hz, 6.6Hz, 6H) ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 156.4, 136.0, 128.6, 128.5, 128.3, 128.2, 128.2, 128.1, 128.1, 71.0,

67.3, 67.1, 59.0, 52.5, 52.4, 42.7, 42.2, 24.5, 24.5, 23.4, 21.8. **HRMS**: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₁₆H₂₁NO₅ 332.1474, found 332.1477.

Methyl (2*S*,3*S*)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2a)

Prepared from **1a** (61.6 mg, 0.2 mmol) to give the product **2a** (44.5 mg, 0.14 mmol, 72%) as a colorless oil. 96.5:3.5 *e.r.* determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, 0.75 mL/min, $\lambda = 214$ nm, t_{minor} = 49.5 min, t_{major} = 56.6min). **Optical rotation:** $[\alpha]_D^{20}$ +41.3 (c 1.7, CHCl₃) ¹H

NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 5.68 (d, J = 8.0 Hz, 1H), 5.19 (dt, J = 9.0, 1.4 Hz, 1H), 5.11 (s, 2H), 4.75 – 4.68 (m, 1H), 4.50 (dd, J = 8.1, 4.2 Hz, 1H), 3.74 (s, 3H), 2.86 (s, 1H), 1.71 (d, J = 1.5 Hz, 3H), 1.66 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 170.5, 156.5, 138.3, 136.0, 128.5, 128.2, 128.1, 121.9, 69.6, 67.2, 59.0, 52.4, 25.9, 18.3. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₆H₂₁NO₅ 330.1317, found 330.1320.

Ethyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2b)

Prepared from **1b** (63.8 mg, 0.2 mmol) to give the product **2b** (49.8 mg, 0.16 mmol, 78%) as a colorless oil. 97.5:2.5 *e.r.* determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, 0.75 mL/min, $\lambda = 214$ nm, t_{minor} = 38.3 min, t_{major} = 41.3min). **Optical rotation:** $[\alpha]_D^{20} + 29.8$ (c 6.5, CH₂Cl₂). ¹H

NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 5.70 (d, J = 7.9 Hz, 1H), 5.20 (dp, J = 9.1, 1.4 Hz, 1H), 5.12 (s, 2H), 4.74 (dd, J = 9.1, 4.0 Hz, 1H), 4.49 (dd, J = 8.0, 4.0 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.80 (s, 1H), 1.71 (d, J = 1.5 Hz, 3H), 1.67 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 156.7, 138.2, 136.1, 128.6, 128.6, 128.3, 128.2, 122.1, 69.7, 67.4, 61.8, 59.2, 26.0, 18.5, 14.2. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₇H₂₁NO₅ 344.1474, found 344.1470.

Cyclohexyl

(2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2c)

Prepared from **1c** (74.6 mg, 0.2 mmol) to give the product **2c** (49 mg, 0.13 mmol, 66%) as a colorless oil. 97:3 *e.r.* determined by HPLC analysis (Chiralcel IA, 15% 2-propanol in hexanes, 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 15.5 min, t_{major}=18.3 min). **Optical rotation:** $[\alpha]_D^{20}$ +29.9 (c 4.7, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.29 (m,

6H), 5.71 (d, J = 7.8 Hz, 1H), 5.21 (dp, J = 8.8, 1.5 Hz, 1H), 5.12 (s, 2H), 4.81 (dq, J = 8.8, 4.3 Hz, 1H), 4.77 – 4.65 (m, 1H), 4.47 (dd, J = 7.9, 3.8 Hz, 1H), 2.87 (s, 1H), 1.80 (dd, J = 11.5, 5.6 Hz, 2H), 1.71 (d, J = 1.5 Hz, 4H), 1.69 (s, 3H), 1.58 – 1.13 (m, 7H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.4, 156.7, 138.2, 136.2, 128.6, 128.6, 128.3,

128.3, 122.2, 74.5, 69.9, 67.4, 59.3, 31.5, 26.0, 26.0, 25.3, 23.7, 23.6, 23.6, 18.6. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₂₁H₂₉NO₅ 398.1943, found 398.2016.

Benzyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2d)

Prepared from 1d (76.2 mg, 0.2 mmol) to give the product 2d (55 OH 0 mg, 0.14 mmol, 72%) as a colorless oil. 96.5:3.5 e.r. determined by HPLC analysis (Chiralcel IA, 30% 2-propanol in hexanes, 0.5 DBn **N**HCbz mL/min, λ =214 nm, t_{minor} = 16.1 min, t_{maior} = 18.0 min). Optical 2d rotation: $[\alpha]_{D}^{20}$ +29.0 (c 4.9, CH₂Cl₂). ¹H NMR (400 MHz, **CDCl**₃) δ 7.35 (d, J = 4.2 Hz, 10H), 5.74 (d, J = 8.1 Hz, 1H), 5.24 – 5.14 (m, 3H), 5.13 (s, 2H), 4.74 (dd, J = 9.1, 4.3 Hz, 1H), 4.56 (dd, J = 8.1, 4.0 Hz, 1H), 2.80 (d, J = 4.8 Hz, 1H), 1.66 (d, J = 1.4 Hz, 3H), 1.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 156.6, 138.5, 136.1, 135.1, 128.7, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 122.0, 69.7, 67.4, 67.4, 59.2, 25.9, 18.4. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₂₂H₂₅NO₅ 406.1630, found 406.1630.

Ethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-5-methylhex-4-enoate

(2e)

Prepared from 1e (57 mg, 0.2 mmol) to give the product 2d (38 mg, 0.13 mmol, 67%) as a colorless oil. 97:3 *e.r.* determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, 0.8 mL/min, $\lambda = 214$ nm, $t_{major} = 15.3$ min, $t_{minor} = 17.3$ min). Optical rotation: $[\alpha]_D^{20}$ +48.3 (c 3.0, CH₂Cl₂). ¹H NMR (400 MHz,

2e rotation: $[\alpha]_D^{20}$ +48.3 (c 3.0, CH₂Cl₂). ¹H NMR (400 MHz, **CDCl**₃) δ 5.40 (d, J = 7.3 Hz, 1H), 5.18 (dp, J = 9.1, 1.4 Hz, 1H), 4.70 (d, J = 9.8 Hz, 1H), 4.41 (t, J = 5.9 Hz, 1H), 4.18 (qd, J = 7.1, 1.0 Hz, 2H), 3.10 (s, 1H), 1.71 (d, J = 1.5 Hz, 3H), 1.67 (d, J = 1.4 Hz, 3H), 1.43 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 156.4, 137.9, 122.3, 80.5, 69.9, 61.7, 58.9, 28.4, 26.0, 26.0, 18.5, 14.3, 14.2. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₄H₂₅NO₅ 310.1630, found 310.1630.

Methyl (2S,3S)-2-acetamido-3-hydroxy-5-methylhex-4-enoate (2f)

Prepared from **1f** (64 mg, 0.3 mmol) to give the product **2f** (37 mg, 0.17 mmol, 58%) as a colorless oil. 81.7:18.3 *e.r.* determined by HPLC analysis (Chiralcel IA, 30% 2-propanol in hexanes, 1 mL/min, $\lambda = 214$ nm, t_{major} = 5.1 min, t_{minor} = 5.5 min). **Optical rotation:** $[\alpha]_D^{20}$ +31.1 (c 3.7, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃)** δ 6.59 (d, J = 7.9 Hz, 1H), 5.19 (ddp, J = 8.7, 4.4, 1.5 Hz, 1H), 4.90 – 4.50 (m, 2H), 3.75 (d, J = 1.6 Hz, 3H), 2.06

(d, J = 1.7 Hz, 3H), 1.79 - 1.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 171.3, 170.5, 138.0, 122.8, 122.1, 69.9, 69.8, 68.6, 58.0, 57.1, 52.6, 26.0, 25.9, 23.1, 18.5, 18.4. HRMS: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₁₀H₁₇NO₄ 238.1055, found 238.1056.

Methyl (2S,3S)-2-benzamido-3-hydroxy-5-methylhex-4-enoate (2g)

1H), 4.96 – 4.70 (m, 2H), 3.75 (d, J = 5.5 Hz, 3H), 1.94 – 1.41 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 168.2, 138.0, 138.0, 133.4, 132.1, 131.9, 128.7, 128.6, 128.6, 127.3, 122.8, 122.2, 70.1, 68.8, 58.4, 57.5, 52.7, 52.7, 26.0, 25.9, 18.5, 18.4. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₅H₁₉NO₄ 300.1212, found 300.1214.

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylhex-4-enoate (2i)

Prepared from **1d** (61.6 mg, 0.2 mmol) to give the product **2d** (56.1 mg, 0.18 mmol, 91%) as a colorless oil. 98.1:1.9 *e.r.* determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, 0.75 mL/min, $\lambda = 214$ nm, t_{minor} = 38.5 min, t_{major} = 44.4min). **Optical rotation:** $[\alpha]_D^{20}$ +15.1 (c 4.4, CH₂Cl₂). ¹H

NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.52 (q, J = 6.3, 5.6 Hz, 2H), 5.19 – 5.01 (m, 2H), 4.50 (dd, J = 8.2, 5.7 Hz, 1H), 4.28 (d, J = 5.8 Hz, 1H), 3.72 (s, 3H), 2.57 (s, 1H), 1.60 (dd, J = 8.4, 2.2 Hz, 6H). ¹³C **NMR (100 MHz, CDCl₃)** δ 171.3, 156.0, 136.0, 133.5, 128.5, 128.2, 128.0, 122.7, 77.4, 67.1, 56.9, 52.3, 13.1, 12.1. **HRMS**: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₁₆H₂₁NO₅ 330.1317, found 330.1316.

Methyl

(2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylpent-4-enoate (2j)

Prepared from **1j** (58.2 mg, 0.2 mmol) to give the product **2j** (35.2 mg, 0.12 mmol, 60%) as a colorless oil. 98.5:1.5 *e.r.* determined by HPLC analysis (Chiralcel IA, 7% 2-propanol in hexanes, 1 mL/min, $\lambda = 214$ nm, t_{minor} = 25.9 min, t_{major} = 32.5min). **Optical rotation:** $[\alpha]_{D}^{20}$ +20.3 (c 2.9, CH₂Cl₂). ¹H **NMR** (400 MHz,

CDCl₃) δ 7.45 – 7.31 (m, 5H), 5.65 (d, J = 8.2 Hz, 1H), 5.14 (dd, J = 5.6, 2.2 Hz, 2H), 5.02 (dq, J = 16.7, 1.3 Hz, 2H), 4.61 (dd, J = 8.1, 4.6 Hz, 1H), 4.41 (s, 1H), 3.76 (s, 3H), 1.79 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 170.9, 156.3, 143.2, 136.1, 128.7, 128.6, 128.4, 128.3, 113.1, 76.0, 67.4, 57.0, 52.5, 18.8. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₁₅H₁₉NO₅ 316.1161, found 316.1162.

Methyl

(2S,3S,4E,6E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxyocta-4,6-dienoate (2k)

Prepared from **1k** (66.2 mg, 0.2 mmol) to give the product **2k** (51.2 mg, 0.15 mmol, 77%) as a colorless oil. 92:8 *e.r.* **2k** (51.2 mg, 0.15 mmol, 77%) as a colorless oil. 92:8 *e.r.* determined by HPLC analysis (Chiralcel IB, 20% 2-propanol in hexanes, 0.5 mL/min, $\lambda = 234$ nm, t_{major} = 13.1 min, t_{minor} = 20.4 min). **Optical rotation:** $[\alpha]_D^{20}$ +16.6 (c 4.5, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl**₃) δ 7.40 – 7.29 (m, 5H), 6.24 (dd, J = 15.3, 10.3 Hz, 1H), 6.11 – 5.91 (m, 1H), 5.80 – 5.64 (m, 2H), 5.49 (dd, J = 15.2, 6.0 Hz, 1H), 5.11 (d, J = 2.2 Hz, 2H), 4.54 (q, J = 4.7, 3.9 Hz, 2H), 4.20 (pd, J = 7.2, 3.4 Hz, 2H), 3.09 (s, 1H), 1.74 (dt, J = 7.1, 2.2 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C **NMR (100 MHz, CDCl**₃) δ 169.9, 156.8, 136.1, 133.2, 131.3, 130.5, 128.6, 128.6, 128.3, 128.2, 128.1, 126.8, 73.4, 67.4, 67.4, 61.9, 59.1, 18.2, 14.3. **HRMS**: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₁₈H₂₃NO₅ 356.1474, found 356.1476.

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-phenylpent-4-enoate (2l)

Prepared from **1e** (70.6 mg, 0.2 mmol) to give the product **2e** (43.6 mg, 0.12 mmol, 61%) as a colorless oil. 88.4:11.6 *e.r.* determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, 0.75 mL/min, $\lambda = 254$ nm, t_{minor} = 74.9 min, t_{maior} = 84.5min). **Optical rotation:**

[α]_D²⁰ +21.6 (c 3.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.25 (m, 10H), 6.67 (d, J = 15.9 Hz, 1H), 6.16 (dd, J = 15.9, 6.0 Hz, 1H), 5.72 (d, J = 8.1 Hz, 1H), 5.12 (dd, J = 5.7, 3.2 Hz, 2H), 4.83 – 4.59 (m, 2H), 3.84 – 3.67 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.8, 136.2, 136.0, 132.8, 128.7, 128.7, 128.6, 128.6, 128.6, 128.6, 128.4, 128.3, 128.2, 126.9, 126.8, 126.4, 73.7, 67.6, 59.2, 52.8. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₂₀H₂₁NO₅ 378.1317, found 378.1320.

Methyl

(2S, 3S, E) - 2 - (((benzy loxy) carbony l) a mino) - 5 - (4 - brom opheny l) - 3 - hydroxypent - 4 - enoate

(2m)

Prepared from **1f** (86.4 mg, 0.2 mmol) to give the product **2f** (37.2 mg, 0.09 mmol, 43%) as a yellowish oil. 90.1:9.9 *e.r.* determined by HPLC analysis (Chiralcel IA, 7.5% 2-propanol in hexanes, 0.6 mL/min, $\lambda = 254$ nm, t_{minor} = 121.4 min, t_{major} =

141.0min). Optical rotation: $[\alpha]_D^{20}$ +23.5 (c 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.33 (s, 5H), 7.23 – 7.18 (m, 2H), 6.67 – 6.51 (m,

1H), 6.14 (dd, J = 15.9, 5.8 Hz, 1H), 5.73 (d, J = 7.9 Hz, 1H), 5.11 (d, J = 2.5 Hz, 2H), 4.78 – 4.57 (m, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 156.6, 135.8, 135.0, 131.7, 131.4, 128.5, 128.3, 128.2, 128.1, 127.1, 121.8, 73.4, 67.4. HRMS: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₂₀H₂₀NO₅Br 456.0423, found 456.0423.

4. Experimental procedures and characterization of products (5-10 and (+)-Alexine (3))

Benzyl

((5S,6R)-5-(2-methylprop-1-en-1-yl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl

)carbamate (5)

To a solution of **2b** (1.86g, 5.8 mmol, 1 eq) in EtOH (40 mL) was added NaBH₄ (0.44g, 11.6 mmol, 2 eq). The reaction mixture was stirred at room temperature overnight. After removing most of the solvent under reduced pressure, the crude mixture was diluted with EtOAc (50 mL). The mixture was then washed with NH₄Cl (sat. aq. soln., 50 mL) and brine (40 mL). The combined organic solvent phase was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude material was used directly for next step.

The crude material was dissolved in CHCl₃/DIPEA (45 mL. 1:1), and to it benzyl chloromethyl ether (13.4 mL, 58 mmol, 10 eq) was added. The reaction mixture was stirred at room temperature overnight. After which it was quenched with NaHCO₃ (sat. aq. soln., 40 mL) and extracted with EtOAc (40 mL), followed by brine wash. The organic extract was dried over Na₂SO₄, filtered, solvent evaporated under reduced pressure and the residue was purified by column chromatography (*n*-heptane/EtOAc 6:1) to furnish the corresponding di-BOM product **5** as a colorless oil (2.33g, 4.5 mmol, 78%). **Optical rotation:** $[\alpha]_{D}^{20}$ +58.7 (c 5.3, CH₂Cl₂). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.38 (dddd, J = 11.7, 8.9, 7.3, 4.9 Hz, 15H), 5.45 (d, J = 9.3 Hz, 1H), 5.30 – 5.11 (m, 3H), 4.92 – 4.68 (m, 6H), 4.68 – 4.61 (m, 2H), 4.56 (d, J = 11.8 Hz, 1H), 4.19 – 4.04 (m, 1H), 3.96 (dd, J = 10.3, 5.5 Hz, 1H), 3.84 (dd, J = 10.3, 4.0 Hz, 1H), 1.80 (d, J = 3.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 139.4, 138.0, 137.8, 136.7, 128.6, 128.6, 128.5, 128.5, 128.1, 127.9, 127.8, 127.8, 127.7,

127.6, 127.0, 121.7, 95.1, 91.7, 72.2, 69.7, 69.5, 67.0, 66.7, 65.3, 54.5, 26.0, 18.5. **HRMS**: (ESI/TOF-Q) m/z: [M + Na]⁺ calcd for C₃₁H₃₇NO₆ 542.2519, found 542.2518.

Benzyl

((5R,6R)-5-((R)-1-hydroxyallyl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)car bamate (7)

Ozone was bubbled through a vigorously stirred solution of **5** (0.2 g, 0.39 mmol, 1 eq) in DCM (15 mL) at -78 $^{\circ}$ C. When TLC showed full conversion of the starting material, dimethylsulfide was added (0.29 mL, 3.9 mmol, 10eq) and the mixture was allowed to warm to room temperature for 6 h. Evaporation of the solvent afforded crude aldehyde which can be used directly in next step.

In another flammable dried round bottom flask, a commercial vinyl magnesium bromide solution (2.8 mL, 0.7 M in THF, 5 eq) was added and evaporated to dryness under reduced pressure, and the residue was dissolved in anhydrous DCM under nitrogen. This operation was repeated twice, and the obtained Grignard reagent solution in DCM (0.5 M) was combined with powered anhydrous ZnCl₂ (0.13 g, 0.96 mmol, 2.5 eq) at 0° C. The resulted suspension was stirred at room temperature for 5h, and then cooled to -78°C. A solution of the fresh prepared aldehyde in anhydrous toluene (0.05M) was added via cannula slowly. The reaction was stirred at -78°C for 2h, then warm to room temperature and stirred overnight. After which it was quenched with NH₄Cl (sat. aq. soln., 30 mL) and extracted with EtOAc (30 mL), followed by brine wash. The organic extract was dried over MgSO₄, filtered, solvent evaporated under vacuum and the residue was purified by column chromatography (*n*-heptane/ EtOAc 3:1) to furnish the corresponding mixed (3:1 dr) product 7 (116 mg, 0.22 mmol, 58%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.23 (m, 15H, two isomers), 5.96 (ddd, J = 16.4, 10.6, 5.3 Hz, 1H, two isomers), 5.72 (d, J = 8.9 Hz, 0.67H, major isomer), 5.56 - 5.48 (m, 0.21H, minor isomer), 5.42 (dt, J =17.3, 1.6 Hz, 0.75H, major isomer), 5.39 – 5.31 (m, 0.29H, minor isomer), 5.23 (dt, J = 10.5, 1.6 Hz, 1H, two isomer), 5.11 (s, 1.71H, major isomer), 5.09 (s, 0.51H, minor isomer), 4.94 – 4.54 (m, 8H, two isomers), 4.36 (s, 0.2H, minor isomer), 4.31 (s, 0.79H, major isomer), 4.14 (ddt, J = 9.2, 6.1, 4.9 Hz, 1H, two isomers), 3.86 (ddd, J =20.0, 10.1, 4.0 Hz, 1H, two isomers), 3.79 - 3.65 (m, 2H, two isomers). ¹³C NMR (100 MHz, CDCl₃) & 156.71, 137.53, 137.40, 136.59, 136.30, 128.54, 128.50, 128.48, 128.21, 128.18, 128.00, 127.86, 127.82, 127.81, 127.78, 116.52, 115.89, 96.09, 96.00,

95.08, 82.54, 81.47, 77.38, 71.92, 70.56, 70.50, 70.44, 69.94, 69.79, 67.39, 67.06, 66.96, 51.62. **HRMS**: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₃₀H₃₅NO₇ 544.2311, found 544.2313.

(5R,6R,7R,E)-7-(((benzyloxy)carbonyl)amino)-5,6,8-trihydroxyoct-3-en-1-yl

4-methylbenzenesulfonate (8)

Mixed starting material **7** (100 mg, 0.19 mmol, 1 eq) and 4-butenol p-tolyl-sulfonate (130 mg, 0.57 mmol, 3 eq) were added simultaneously via syringe to a stirring solution of Grubbs 2^{nd} catalyst (16 mg, 0.02 mmol, 0.1 eq) in CH₂Cl₂ (5 mL) under nitrogen atmosphere. The flask was allowed to stir at room temperature for 1 day. The reaction mixture was then reduced in volume to 0.5 mL and purified directly by column chromatography (heptane/EtOAc 1:1) to furnish the corresponding mixed (*dr* 3:1) *trans* olefin product (61 mg, 44% (64% brsm)) as a colorless oil.

To a solution of *trans* olefin product (61 mg, 0.085 mmol, 1 eq) in MeOH (5 mL) was added HCl (35% aq., 1 mL) in 0°C. After stirring overnight, the reaction was quenched with NaHCO₃ (sat. aq. soln., 15 mL) and the aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (CH₂Cl₂/MeOH 30:1) to furnish desired product **8** (27.3 mg, 67%, *dr* > 95:5) and undesired product **8b** (8.5 mg, 21 %, *dr* > 95:5). **Optical rotation for 8:** $[\alpha]_D^{20}$ -4.5 (c 1.7, CHCl₃). ¹**H NMR for 8 (400 MHz, MeOD**) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.40 – 7.20 (m, 5H), 5.76 – 5.52 (m, 2H), 5.08 (d, *J* = 1.8 Hz, 2H), 4.15 – 3.94 (m, 3H), 3.72 (q, *J* = 7.7, 6.9 Hz, 3H), 3.48 (dd, *J* = 6.4, 3.4 Hz, 1H), 2.44 (s, 3H), 2.35 (q, *J* = 6.4 Hz, 2H). ¹³**C NMR for 8 (100 MHz, MeOD**) δ 158.8, 146.5, 138.2, 134.7, 134.4, 131.1, 129.5, 129.0, 129.0, 128.9, 127.6, 74.8, 73.1, 71.1, 67.6, 62.3, 55.8, 55.7, 32.9, 21.6. **HRMS**: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₂₃H₂₉NO₈S 480.1692, found 480.1690.

2-((2S,3S)-3-((1S,2R,3R)-3-(((benzyloxy)carbonyl)amino)-1,2,4-trihydroxybutyl)o xiran-2-yl)ethyl 4-methylbenzenesulfonate (10)

Starting material 8 (20 mg, 0.04 mmol, 1 eq) and β -hydroperoxy alcohol 9 (8.4 mg, 0.06 mmol, 1.5 eq) were dissolved in anhydrous CH₂Cl₂ (5 mL). Under a nitrogen atmosphere, Ti(OiPr)₄ (1.2 mg, 0.004 mmol, 0.1 eq) was added and the reaction mixture was stirred overnight at room temperature. The reaction was then quenched by addition of NH₄F (sat. aq. soln., 0.1 mL) and the reaction was stirred vigorously for 1h. The precipitate was removed by filtration, the filtrate concentrated under reduced pressure and the residue was purified by column chromatography (CH₂Cl₂/MeOH 30:1) to furnish the corresponding epoxide 10 (16.3 mg, 78%, dr >95:5) as a colorless oil. **Optical rotation:** $[\alpha]_D^{20}$ -10.9 (c 1.1, CHCl₃). ¹H NMR (400 **MHz, MeOD**) δ 7.89 – 7.71 (m, 2H), 7.50 – 7.40 (m, 2H), 7.41 – 7.22 (m, 5H), 5.18 – 5.02 (m, 2H), 4.15 (dd, J = 6.8, 5.7 Hz, 2H), 3.84 – 3.68 (m, 3H), 3.65 (dd, J = 7.7, 2.0 Hz, 1H), 3.38 (dd, J = 5.7, 2.0 Hz, 1H), 2.96 (ddd, J = 6.7, 4.1, 2.1 Hz, 1H), 2.87 (dd, J = 5.7, 2.2 Hz, 1H), 2.45 (s, 3H), 2.03 (dtd, J = 14.0, 6.8, 4.1 Hz, 1H), 1.81 -1.62 (m, 1H). ¹³C NMR (100 MHz, MeOD) δ 157.5, 145.2, 136.9, 132.9, 129.7, 128.1, 127.6, 127.5, 70.6, 70.0, 67.5, 66.2, 61.0, 58.1, 54.1, 53.6, 31.2, 20.2. HRMS: (ESI/TOF-Q) *m/z*: [M + Na]⁺ calcd for C₂₃H₂₉NO₉S 496.1641, found 496.1645.

(+)-Alexine (3)

Pd/C (16 mg, 10 wt.%, 0.1 eq) was added to 10 (76 mg, 0.15 mmol, 1 eq) in EtOH (2 mL). The reaction mixture was stirred under an atmosphere of H₂ at room temperature for 3h. The reaction was filtered over Celite and the solvent was removed in vacuo. The crude intermediate by column chromatography was purified (EtOAc/MeOH/iPrNH₂ 10:10:1) to afford (+)-Alexine 3 (22 mg, 76%) as a white solid. mp (160-162°C). Optical rotation: $[\alpha]_D^{20}$ +42.1 (c 0.3, H₂O). ¹H NMR (400 **MHz, D₂O**) δ 4.49 – 4.34 (m, 1H), 4.18 (dd, J = 7.7, 6.5 Hz, 1H), 3.87 – 3.80 (m, 2H), 3.77 (dd, J = 9.2, 6.5 Hz, 1H), 3.28 (dd, J = 7.7, 5.5 Hz, 1H), 3.02 – 2.75 (m, 3H), 2.18 (dtd, J = 12.5, 6.2, 3.1 Hz, 1H), 1.73 (ddt, J = 12.3, 10.0, 7.4 Hz, 1H). ¹³C

NMR (100 MHz, D₂O) δ 76.3, 76.2, 70.2, 69.9, 64.2, 59.1, 45.6, 34.2. **HRMS**: (ESI/TOF-Q) *m*/*z*: [M + Na]⁺ calcd for C₈H₁₅NO₄ 190.1079, found 190.1087.

6. NMR spectrum

Starting material (method 1,1a, 1c-d, 1i-j, 1l-n)

Methyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3a)

¹H-NMR

Methyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1a) ¹H-NMR

Cyclohexyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3c) ¹H-NMR

Methyl (*E*)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1c)

¹H-NMR

Benzyl N-((benzyloxy)carbonyl)-N-(3-methylbut-2-enoyl)glycinate (S3d) ¹H-NMR

50 40 30 20 10 0 -10

Benzyl 2-(((benzyloxy)carbonyl)amino)-5-methyl-3-oxohex-4-enoate (1d) ¹H-NMR

Methyl (*E*)-N-((benzyloxy)carbonyl)-N-(2-methylbut-2-enoyl)glycinate (S3i) ¹H-NMR

Methyl (*E*)-2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxohex-4-enoate (1i) ¹H-NMR

50 40 30 20 10

0 -10

Methyl N-((benzyloxy)carbonyl)-N-methacryloylglycinate (S3j) ¹H-NMR

Methyl 2-(((benzyloxy)carbonyl)amino)-4-methyl-3-oxopent-4-enoate (1j)

Methyl N-((benzyloxy)carbonyl)-N-cinnamoylglycinate (S3l) ¹H-NMR

¹³C-NMR

Methyl (*E*)-2-(((benzyloxy)carbonyl)amino)-3-oxo-5-phenylpent-4-enoate (11) ¹H-NMR

Methyl (E)-N-((benzyloxy)carbonyl)-N-(3-(4-bromophenyl)acryloyl)glycinate (S3m) ¹H-NMR

¹³C-NMR

Methyl (*E*)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-oxopent-4-enoate (1m) ¹H-NMR

Methyl N-((benzyloxy)carbonyl)-N-(hex-2-ynoyl)glycinate (S3n) ¹H-NMR

Methyl 2-(((benzyloxy)carbonyl)amino)-3-oxooct-4-ynoate (1n) ¹H-NMR

Method 2 (1b, 1e, 1h, 1k, 1o)

Ethyl (*E*)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1b) ¹H-NMR

Ethyl 2-((tert-butoxycarbonyl)amino)-5-methyl-3-oxohex-4-enoate (1e)

¹H-NMR

¹³C-NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Ethyl (E)-2-((tert-butoxycarbonyl)amino)-3-oxohex-4-enoate (1h) ¹H-NMR

Ethyl (4E,6E)-2-((tert-butoxycarbonyl)amino)-3-oxoocta-4,6-dienoate (1k) ¹H-NMR

6-Ethyl 1-methyl (E)-5-(((benzyloxy)carbonyl)amino)-4-oxohex-2-enedioate (10) ¹H-NMR

40

Method 3(1f. 1g)

Methyl 2-acetamido-5-methyl-3-oxohex-4-enoate (1f) ¹H-NMR

Methyl 2-benzamido-5-methyl-3-oxohex-4-enoate (1g) ¹H-NMR

NMR Specturm of product (2a-2m, 4, 5, 7, 8, 10 amd (+)-Alexine (3)) Methyl 2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhexanoate (4)

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2a)

Ethyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2b)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Cyclohexyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2c)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Benzyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2d)

Ethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2e)

Methyl (2S,3S)-2-acetamido-3-hydroxy-5-methylhex-4-enoate (2f)

Methyl (2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylhex-4-enoate (2i)

Methyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylpent-4-enoate (2j)

Methyl (2S,3S,4E,6E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxyocta-4,6-dienoate (2k)

Methyl (2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-phenylpent-4-enoate (2l)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Methyl

(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-hydroxypent-4-enoate (2m)

Benzyl ((5S,6R)-5-(2-methylprop-1-en-1-yl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)carbamate (5)

Benzyl ((5R,6R)-5-((R)-1-hydroxyallyl)-1,11-diphenyl-2,4,8,10-tetraoxaundecan-6-yl)car bamate (7)

(5R,6R,7R,E)-7-(((benzyloxy)carbonyl)amino)-5,6,8-trihydroxyoct-3-en-1-yl 4-methylbenzenesulfonate (8)

2-((2S,3S)-3-((1S,2R,3R)-3-(((benzyloxy)carbonyl)amino)-1,2,4-trihydroxybutyl)o xiran-2-yl)ethyl 4-methylbenzenesulfonate (10)

(+)-Alexine (3)

7. HPLC spectrum of products (2a-2g, 2i-2m)

Methyl (2*S*,3*S*)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2a)

4	#	Time	Area	Height	Width	Area%	Symmetry
	1	48.804	46791.7	729.7	0.9921	49.338	0.647
	2	55.568	48046.8	567.6	1.2796	50.662	0.477

#	Time	Area	Height	Width	Area%	Symmetry
1	49.559	1062.4	17.5	0.9282	3.444	0.958
2	56.6	29786	368.6	1.2387	96.556	0.546

Ethyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2b)

#	Time	Area	Height	Width	Area%	Symmetry
1	36.954	9172.1	170.3	0.8245	49.880	0.828
2	40.254	9216.3	153	0.9227	50.120	0.774

	#	Time	Area	Height	Width	Area%	Symmetry
	1	38.255	455.6	9.5	0.7436	2.515	0.976
[2	41.27	17659.9	296.2	0.9937	97.485	0.644

Cyclohexyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2c)

#	Time	Area	Height	Width	Area%	Symmetry
1	15.513	18429.7	852.1	0.3323	48.406	0.778
2	18.32	19643.6	702	0.4305	51.594	0.762

#	Time	Area	Height	Width	Area%	Symmetry
1	15.504	711	32.7	0.3373	3.053	0.888
2	18.259	22581.6	830.1	0.4214	96.947	0.711

Benzyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2d)

#	Time	Area	Height	Width	Area%	Symmetry
1	16.076	7996	388.7	0.316	49.656	0.878
2	18.045	8106.9	340.6	0.3657	50.344	0.847

#	Time	Area	Height	Width	Area%	Symmetry
1	16.076	1138.9	56.7	0.3062	3.541	0.957
2	17.986	31028	1278.7	0.3751	96.459	0.764

Ethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-5-methylhex-4-enoate (2e)

#	Time	Area	Height	Width	Area%	Symmetry
1	15.394	2362.3	111.1	0.328	50.601	0.825
2	17.297	2306.2	90.8	0.3925	49.399	0.823

#	Time	Area	Height	Width	Area%	Symmetry
1	15.34	4922.4	233.8	0.3296	96.441	0.808
2	17.293	181.6	5.4	0.4849	3.559	0.866

$Methyl\ (2S,\!3S)\mbox{-}2\mbox{-}acetamido\mbox{-}3\mbox{-}hydroxy\mbox{-}5\mbox{-}methylhex\mbox{-}4\mbox{-}enoate\ (2f)$

#	Time	Area	Height	Width	Area%	Symmetry
1	5.021	631.2	66.3	0.1588	50.350	0.727
2	5.392	622.5	62.1	0.149	49.650	0.728

#	Time	Area	Height	Width	Area%	Symmetry
1	5.111	9214.6	1062.3	0.1446	81.740	0.709
2	5.507	2058.4	215.9	0.1432	18.260	0.71

Methyl (2S,3S)-2-benzamido-3-hydroxy-5-methylhex-4-enoate (2g)

#	Time	Area	Height	Width	Area%	Symmetry
1	31.43	39425	784.3	0.7784	49.291	0.607
2	33.092	40559.6	759	0.8074	50.709	0.554

#	Time	Area	Height	Width	Area%	Symmetry
1	32.141	28547.4	592.7	0.7299	83.407	0.604
2	34.092	5679.4	106.5	0.7983	16.593	0.558

Methyl (2*S*,3*S*,*E*)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylhex-4-enoate (2i)

#	Time	Area	Height	Width	Area%	Symmetry
1	38.465	334.9	6.3	0.8215	1.865	0.942
2	44.404	17624.1	252.4	1.0626	98.135	0.469

Methyl (25,35)-2-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-methylpent-4-enoate (2j)

#	Time	Area	Height	Width	Area%	Symmetry
1	25.968	63	1.3	0.6704	1.503	0.805
2	32.566	4129.6	67.8	0.9511	98.497	0.896

Methyl (2S,3S,4E,6E)-2-(((benzyloxy)carbonyl)amino)-3-hydroxyocta-4,6-dienoate (2k)

#	Time	Area	Height	Width	Area%	Symmetry
1	12.793	13160.5	808.2	0.248	48.921	0.724
2	20.012	13740.8	517.4	0.4018	51.079	0.688

#	Time	Area	Height	Width	Area%	Symmetry
1	13.106	24839.1	1586.6	0.2386	92.279	0.734
2	20.358	2078.4	84.4	0.4106	7.721	0.867

Methyl~(2S, 3S, E) - 2 - (((benzyloxy) carbonyl) amino) - 3 - hydroxy - 5 - phenylpent - 4 - enoate~(2l)

#	Time	Area	Height	Width	Area%	Symmetry
1	74.76	7304	66.8	1.6764	49.871	0.807
2	85.43	7341.8	58.8	1.8725	50.129	0.793

_	#	Time	Area	Height	Width	Area%	Symmetry
	1	74.889	7506.6	68.8	1.6616	11.606	0.816
	2	84.482	57171.8	407.3	2.0657	88.394	0.503

Methyl(2S,3S,E)-2-(((benzyloxy)carbonyl)amino)-5-(4-bromophenyl)-3-hydroxypent-4-e noate (2m)

#	Time	Area	Height	Width	Area%	Symmetry
1	121.454	6363.7	37.6	2.5516	50.030	0.809
2	141.85	6356.1	32.4	2.9478	49.970	0.773

#	Time	Area	Height	Width	Area%	Symmetry
1	121.375	5714.5	33.5	2.4617	9.870	0.787
2	141.011	52182.7	255.5	3.1265	90.130	0.637

1. Seashore-Ludlow, B.; Villo, P.; Somfai, P., *Chemistry – A European Journal* **2012**, *18*, 7219-7223.

2. Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K., *The Journal of Organic Chemistry* **2008**, *73*, 5147-5150.