# The Physicochemical Investigation of Hydrothermally Reduced Textile Waste and Application within Carbon-Based Electrodes

## **Electronic Supplementary Information**

Edward P. Randviir\*<sup>1</sup>, Omar Kanou<sup>1</sup>, Christopher Liauw<sup>2</sup>, Gary J. Miller<sup>3</sup>, Hayley G. Andrews<sup>3</sup>, and

Graham C. Smith<sup>4</sup>

<sup>1</sup>School of Science and the Environment, Faculty of Science and Engineering,

Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK

<sup>2</sup>School of Healthcare Science, Faculty of Science and Engineering,

Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK

<sup>3</sup>Technical Services, Faculty of Science and Engineering,

Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK

<sup>4</sup>Department of Natural Sciences, Faculty of Science & Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK

Submission to: Journal of Materials Chemistry A

\*To whom correspondence should be addressed.

Email: <u>E.Randviir@mmu.ac.uk;</u> Tel: ++(0)1612471188; Fax: ++(0)1612476831

Plot of carbon % *versus* reaction acid concentration, contrasted against the carbon content of the raw PET fibre. Results determined using a LECO elemental analyser.



Reaction Concentration / M

Raw IR spectra obtained for the PET/cotton mix and each hydrochar.



Wavenumber / cm<sup>-1</sup>

Raman fingerprint of the crystalline region of the obtained hydrochars. The image is baseline corrected.



SEM images for (A) PET/cotton fibres, and hydrochars synthesized from PET/cotton using (B) 0.05 M, (C) 0.1 M, (D) 0.15 M, (E) 0.2 M, (F) 0.25 M, (G) 0.3 M, (H) 0.35 M, (I) 0.5 M, and (J)  $1.0 \text{ M} \text{ H}_3\text{PO}_4$ . The scale bar in each image represents 20  $\mu$ m.



Surface elemental species present on the PET and hydrochars, measured using EDX spectroscopy. The error bars represent standard deviations from three independent experiments. Top: carbon and oxygen content; bottom: phosphorous content.



Reaction Concentration / M

Differential scanning calorimetry results for terephthalic acid (TPA) and hydrochars. The data is normalized to account for sample mass.



Scan rate study of 1 mM hexamine-ruthenium (III) chloride (in pH 7.4 PBS and 0.1 M KCl) using a CPE working electrode constructed from the 0.3 M hydrochar. The electrode was constructed using a powder made from 50:50 SuperP:hydrochar.



Normalized current sensitivity plotted as a function of reaction concentration. The normalization is applied by dividing each sensitivity value by the reference value in the series (i.e. the conductive carbon CPE).



### ESI Table 1

Total carbon analysis of the hydrochars obtained from the reaction of PET/cotton under hydrothermal conditions in various concentrations of H<sub>3</sub>PO<sub>4</sub>.

| Concentration of H <sub>3</sub> PO <sub>4</sub> | Mass (g) | Total C (%) | Total N (%) |
|-------------------------------------------------|----------|-------------|-------------|
| (M)                                             |          |             |             |
| <b>PET/Cotton only</b>                          | 0.1379   | 53.22       | 0.2872      |
| 0.05                                            | 0.1507   | 55.42       | 0.1601      |
| 0.1                                             | 0.1506   | 57.45       | 0.1834      |
| 0.15                                            | 0.1508   | 55.9        | 0.137       |
| 0.2                                             | 0.1501   | 56.84       | 0.1296      |
| 0.25                                            | 0.1511   | 56.68       | 0.1219      |
| 0.3                                             | 0.1509   | 56.13       | 0.0996      |
| 0.35                                            | 0.15     | 55.52       | 0.1         |
| 0.5                                             | 0.1496   | 55.56       | 0.0393      |
| 1.0                                             | 0.1379   | 55.42       | 0.1601      |