Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Facile synthesis of ordered mesoporous zinc alumina catalysts and

dehydrogenation behavior

Ming Cheng ^{a,b}, Huahua Zhao ^a, Jian Yang ^a, Jun Zhao ^a, Liang Yan ^a, Huanling Song

^{a,*}, Lingjun Chou ^{a,c,*}

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute

of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR

China

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

^c Suzhou Research Institute of LICP, Chinese Academy of Sciences, Suzhou 215123, PR China

*Corresponding author. *E-mail address*: ljchou@licp.cas.cn (Lingjun Chou), Tel: +86 931 4968 066, Fax: +86 931 4968 129; songhl@licp.cas.cn(Huanling Song), Tel: +86 931 4968 066, Fax: +86 931 4968 129;

S1. NH₃-TPD analysis

Fig. S1. The NH₃-TPD profiles of the as-synthesized xZn/Al_2O_3 catalysts and Al_2O_3 : (a) Al_2O_3 ; (b) $3\%Zn/Al_2O_3$; (c) $5\%Zn/Al_2O_3$; (d) $7\%Zn/Al_2O_3$; (e) $10\%Zn/Al_2O_3$; (f) $15\%Zn/Al_2O_3$.

S2. NH₃-TPD profiles

Fig. S2. The NH₃-TPD profile of ZnO.

S3. The catalytic dehydrogenation of isobutane over the ordered mesoporous Al_2O_3 and commercial ZnO.

Fig. S3. The catalytic dehydrogenation of isobutane over the ordered mesoporous Al_2O_3 and commercial ZnO. Reaction condition: T = 580 °C, GHSV = 300 h⁻¹.

S4. Nitrogen adsorption-desorption analysis

Fig. S4. The nitrogen adsorption–desorption analysis of the catalysts: (a) the spent10%Zn/Al₂O₃; (b) the fifth regenerated 10%Zn/Al₂O₃; (c) the spent 15%Zn/Al₂O₃.