Supporting Information for:

Preparation, crystal structure and luminescence properties of a novel

single-phase red emitting phosphor CaSr₂(PO₄)₂: Sm³⁺, Li⁺

Yuying Chen, ^{a,b} Qingfeng Guo, ^{*} ^{a,b} Libing Liao, ^{*} ^c Mingyue He, ^{a,b} Tianshuai Zhou, ^c Lefu

Mei, *c Marcin Runowski, d Bin Ma e

^a School of Gemology, China University of Geosciences, Beijing 100083, China.

^bJewelry and mineral materials Laboratory of experimental teaching demonstration center, Beijing.

^c Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials. School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China

^d Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland

^e Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, PR China.

* * Corresponding Authors

Qingfeng Guo, E-mail: qfguo@cugb.edu.cn;

Libing Liao, E-mail: clayl@cugb.edu.cn;

Lefu Mei, E-mail: <u>mlf@cugb.edu.cn;</u>

Fig. S1 The Rietveld refinement of $CaSr_{1.82}Sm_{0.09}Li_{0.09}(PO_4)_2$ by TOPAS program. Solid red lines are calculated intensities, and blue circles are the observed intensities. Short orange vertical lines show the position of Bragg reflections of the calculated pattern. Green solid lines below the profiles stand for the difference between the observed and the calculated intensities.

Formula	$CaSr_{1.82}Sm_{0.09}Li_{0.09}(PO_4)_2$
Space group	<i>R3c</i> (161)
Symmetry	Trigonal
a/b(Å)	10.5918(11)
c(Å)	38.835(4)
α/β	90°
γ	120°
$V(Å^3)$	3773.06(55)
$R_{wp}(\%)$	15.47
$R_p(\%)$	10.64
χ^2	7.757

Table S1. Crystallographic data for $CaSr_{1.82}Sm_{0.09}Li_{0.09}(PO_4)_2$ based on Rietveld refinement.

Atom	Wyckoff	x	у	Z	U
	position				150
Cal	18 <i>b</i>	0.7254(24)	0.8510(31)	0.1923(8)	0.040(9)
Sr1	18 <i>b</i>	0.7254(24)	0.8510(31)	0.1923(8)	0.040(9)
Sm1	18 <i>b</i>	0.7254(24)	0.8510(31)	0.1923(8)	0.040(9)
Li1	18 <i>b</i>	0.7254(24)	0.8510(31)	0.1923(8)	0.040(9)
Ca2	18 <i>b</i>	0.6320(25)	0.8104(31)	-0.0111(7)	0.015(7)
Sr2	18 <i>b</i>	0.6320(25)	0.8104(31)	-0.0111(7)	0.015(7)
Sm2	18 <i>b</i>	0.6320(25)	0.8104(31)	-0.0111(7)	0.015(7)
Li2	18 <i>b</i>	0.6320(25)	0.8104(31)	-0.0111(7)	0.015(7)
Ca3	18 <i>b</i>	0.7075(24)	0.8628(25)	0.0879(8)	0.016(5)
Sr3	18 <i>b</i>	0.7075(24)	0.8628(25)	0.0879(8)	0.016(5)
Sm3	18 <i>b</i>	0.7075(24)	0.8628(25)	0.0879(8)	0.016(5)
Li3	18 <i>b</i>	0.7075(24)	0.8628(25)	0.0879(8)	0.016(5)
Ca4	6 <i>a</i>	0	0	-0.07723	0.0126
Sr4	6 <i>a</i>	0	0	-0.07723	0.0126
Sm4	6 <i>a</i>	0	0	-0.07723	0.0126
Li4	6 <i>a</i>	0	0	-0.07723	0.0126
Ca5	6 <i>a</i>	0	0	0.75595	0.0504
P1	6 <i>a</i>	0	0	0	0.0589
P2	18 <i>b</i>	0.72429	0.84177	0.88810	0.0269
P3	18 <i>b</i>	0.65703	0.83698	0.79027	0.0474
01	18 <i>b</i>	0.74948	-0.14214	-0.06854	-0.0301
02	18 <i>b</i>	0.77933	0.75582	0.88544	0.0428
O3	18 <i>b</i>	0.65657	0.04995	0.87126	0.1265
O4	18 <i>b</i>	0.59511	0.87538	0.89581	0.0702
05	18 <i>b</i>	0.61718	-0.11692	0.79938	0.1148
06	18 <i>b</i>	0.60509	0.63715	0.81502	0.0256
07	18 <i>b</i>	0.09528	0.91418	0.79922	-0.0512
08	18 <i>b</i>	0.62949	0.81201	0.74855	0.0803
09	18 <i>b</i>	-0.03498	0.85258	-0.01338	0.0158
O10	6 <i>a</i>	0	0	0.04823	0.0197

Table S2. The refined atomic positions and isotropic temperature factors for all atoms.