1

# **Supporting Information**

# An efficient synthesis of new imidazo[1,2-*a*]pyridine-6-carbohydrazide and pyrido[1,2-*a*]pyrimidine-7-carbohydrazide derivatives *via* a five-component cascade reaction

### Hajar Hosseini and Mohammad Bayat

Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. E-mail: bayat mo@yahoo.com, m.bayat@sci.ikiu.ac.ir

# The Table of Contents

| Title                                                                          | Page  |
|--------------------------------------------------------------------------------|-------|
| Title, author's name, address and table of contents                            | 1-2   |
| Experimental Section; General remarks                                          | 2     |
| Figure 1. Structure of all products 6a-q                                       | 3     |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR and Mass spectrums of <b>6a</b>  | 5-8   |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR and Mass spectrums of <b>6b</b>  | 9-12  |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR spectrums of <b>6c</b>           | 13-15 |
| <sup>1</sup> H and <sup>13</sup> C NMR and Mass spectrums of <b>6d</b>         | 16-18 |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR spectrums of <b>6e</b>           | 19-21 |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR spectrums of <b>6f</b>           | 22-24 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums of <b>6g</b>                  | 25-26 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums of <b>6h</b>                  | 27-28 |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR and Mass spectrums of <b>6i</b>  | 29-32 |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR and Mass spectrums of <b>6</b> j | 33-36 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums of <b>6</b> k                 | 37-38 |
| <sup>1</sup> H and <sup>13</sup> C NMR and IR and Mass spectrums of <b>6</b> I | 39-42 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums of <b>6m</b>                  | 43-44 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums of <b>6n</b>                  | 45-46 |

| <sup>1</sup> H and <sup>13</sup> C NMR and IR and Mass spectrums of <b>60</b> | 47-50 |
|-------------------------------------------------------------------------------|-------|
| <sup>1</sup> H and <sup>13</sup> C NMR spectrums of <b>6</b> p                | 51-52 |
| <sup>1</sup> H and <sup>13</sup> C NMR and Mass spectrums of <b>6q</b>        | 53-55 |

#### **Experimental Section**

## **General remarks:**

Melting points were measured on an Electrothermal 9100 apparatus. Mass spectra were recorded with an Agilent 5975C VL MSD with Triple-Axis Detector operating at an ionization potential of 70 eV. <sup>1</sup>H and <sup>13</sup>C NMR spectra were measured (DMSO) with a Bruker DRX-300 AVANCE spectrometer at 300 and 75 MHz, respectively. IR spectra were recorded on a Bruker Tensor 27,  $\bar{v}$ in cm<sup>-1</sup>. All NMR spectra at room temperature were determined in DMSO-*d*<sub>6</sub>. Chemical shifts are reported in parts per million ( $\delta$ ) downfield from an internal tetramethylsilane reference. Coupling constants (*J* values) are reported in hertz (Hz), and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All chemicals were purchased from Merck or Aldrich and were used without further purification.



Figure 1. Structure of all products 6a-q.

The structures of all products **6a-q** were deduced from their IR, mass, <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectra (see the following images).

The <sup>1</sup>H and <sup>13</sup>C NMR spectra are taken in DMSO- $d_6$ , but some of the products are slightly soluble in the solvent therefore have no clear carbon spectra such as **6g**, **6h**, **6m**, **6o**, **6p**, **6q**.



<sup>1</sup>H NMR of 6a

![](_page_5_Figure_0.jpeg)

<sup>13</sup>C NMR of 6a

![](_page_6_Figure_0.jpeg)

IR of 6a

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

<sup>1</sup>H NMR of 6b

![](_page_9_Figure_0.jpeg)

<sup>13</sup>C NMR of 6b

![](_page_10_Figure_0.jpeg)

IR of 6b

![](_page_11_Figure_1.jpeg)

MS of 6b

![](_page_12_Figure_0.jpeg)

<sup>1</sup>H NMR of 6c

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

IR of 6c

![](_page_15_Figure_0.jpeg)

<sup>1</sup>H NMR of 6d

![](_page_16_Figure_0.jpeg)

<sup>13</sup>C NMR of 6d

![](_page_17_Figure_1.jpeg)

MS of 6d

![](_page_18_Figure_0.jpeg)

<sup>1</sup>H NMR of 6e

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

IR of 6e

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

IR of 6f

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

<sup>13</sup>C NMR of 6g

![](_page_26_Figure_0.jpeg)

<sup>1</sup>H NMR of 6h

![](_page_27_Figure_0.jpeg)

<sup>13</sup>C NMR of 6h

![](_page_28_Figure_0.jpeg)

<sup>1</sup>H NMR of 6i

![](_page_29_Figure_0.jpeg)

<sup>13</sup>C NMR of 6i

![](_page_30_Figure_0.jpeg)

IR of 6i

![](_page_31_Figure_1.jpeg)

MS of 6i

![](_page_32_Figure_0.jpeg)

<sup>1</sup>H NMR of 6j

![](_page_33_Figure_0.jpeg)

<sup>13</sup>C NMR of 6j

![](_page_34_Figure_0.jpeg)

IR of 6j

![](_page_35_Figure_1.jpeg)

MS of 6j

![](_page_36_Figure_0.jpeg)

<sup>1</sup>H NMR of 6k

![](_page_37_Figure_0.jpeg)

<sup>13</sup>C NMR of 6k

![](_page_38_Figure_0.jpeg)

<sup>1</sup>H NMR of 6l

![](_page_39_Figure_0.jpeg)

<sup>13</sup>C NMR of 6l

![](_page_40_Figure_0.jpeg)

IR of 6l

![](_page_41_Figure_1.jpeg)

MS of 6l

![](_page_42_Figure_0.jpeg)

<sup>1</sup>H NMR of 6m

![](_page_43_Figure_0.jpeg)

<sup>13</sup>C NMR of 6m

![](_page_44_Figure_0.jpeg)

<sup>1</sup>H NMR of 6n

![](_page_45_Figure_0.jpeg)

<sup>13</sup>C NMR of 6n

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

<sup>13</sup>C NMR of 60

![](_page_48_Figure_0.jpeg)

IR of 60

![](_page_49_Figure_1.jpeg)

MS of 60

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

<sup>13</sup>C NMR of 6p

![](_page_52_Figure_0.jpeg)

<sup>1</sup>H NMR of 6q

![](_page_53_Figure_0.jpeg)

<sup>13</sup>C NMR of 6q

![](_page_54_Figure_1.jpeg)

MS of 6q