Supporting Information

Elastic and Hydrostatic Behaviour of a Zinc Dietary Supplement, Zinc Glycinate Hydrate

Muhammad Azeem,^a Muhammad Asif, ^b Di Gui, ^a Liyuan Dong, ^a Chunlei Pei, ^{*c} Peixiang Lu, ^{a,d} Wei Li, ^{*a,e}

^a School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

^b School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

^c School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China. E-mail: *chunlei.pei@tju.edu.cn*

^d Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.

^e School of Materials Science and Engineering, Nankai University, Tianjin 300350, China. E-mail: *wl276@nankai.edu.cn*

Fig. S1. Crystal structure of ZnG with hydrogen bonding. (a) View in *bc*-plane (b) Layer stacking perpendicular to *c*-axis view in *ac*-plane.

Fig. S2. The stacking and presence of layered nanosheets on the surface of the substrate at different places. (a) Stepwise stacking of layered nanosheets scanned at $5\mu m$ with area $10\times10 \mu m^2$. (b) Graphical representation of thickness of stacked nanosheets with height difference of ~4.2 nm correspond to 5-layers thickness.

Fig. S3. TEM images of ZnG single crystal. (a-b) Bright field images of layered nanosheets with different lateral sizes. (c) Simulated diffraction pattern for mentioned planes along [001] direction.

Fig. S4. The high-pressure synchrotron X-ray diffraction pattern of ZnG refined using Le Bail method to indicate its purity at ambient conditions. Black crosses: observed X-ray powder diffraction, Orange line: calculated profile; blue line: the difference between observed data and calculated profile. The light blue vertical markers indicate the allowed Bragg reflections. The final *Rp* and *Rwp* are 0.89% and 1.85%. The cell parameters were determined to be a = 19.714(2) Å, b = 10.468(13) Å, c = 15.048(15) Å, $\beta = 92.806(2)^\circ$, V = 3109.28(13) Å³

Fig. S5. The compressibility indicatrix for pressure range (ambient–12.10 GPa), while the magnitudes of corresponding compressibility K_{X1} , K_{X2} and K_{X3} are mentioned. The red values correspond to positive linear compressibility (PLC) and blue shows negative linear compressibility (NLC).

	Elastic constants											
	C _{ij} (GPa)											
C ₁₁	C ₂₂	<i>C</i> ₃₃	<i>C</i> ₄₄	C 55	C ₆₆	C ₁₂	<i>C</i> ₁₃	C 15	<i>C</i> ₂₃	C ₂₅	<i>C</i> ₃₅	C 46
66.85	54.09	26.59	12.19	16.12	14.75	28.42	23.38	14.17	23.80	1.42	3.51	-1.23

Table S2. The elastic moduli (E), Poisson's ratios (v) and shear moduli (G) extracted from the DFT calculation results.

Elastic modulus		Poisson's ratios				Shear modulus		
direction	value	direction	value	direction	value	max	min	
X	36.11	ху	0.26	XZ	0.54			
У	30.61	ух	0.22	yz	0.73	19.15	6.52	
Z	13.84	ZX	0.20	zy	0.33			

Table S3. The calculated elastic moduli of ZnG under ambient pressure from first-principles calculations.

Orientation	Elastic Modulus (GPa)
[100]	36.11
~[010]	30.61
[001]	13.84

Table S4. Principal compressibilities and corresponding principal axes were determined using the PASCal software for ZnG.

		Comj			
Principal axis, <i>i</i>	<i>K</i> _{xi} (TPa ⁻¹)	cr	Approximate axis		
		a	b	c	
1	3.79	0.0834	0	0.9965	~[001]
2	4.75	0.0000	1	0.0000	[010]
3	9.11	-0.9964	0	0.0844	~[100]

	Compressibility (TPa ⁻¹)					
Pressure (GPa)	K _{X1}	K _{X2}	K _{X3}			
0.00						
1.32	10.37	3.64	3.24			
4.6	9.42	4.32	3.64			
5.39	9.31	4.46	3.69			
6.23	9.21	4.59	3.74			
7.24	9.11	4.75	3.79			
9.38	8.94	5.05	3.88			
10.87	8.84	5.25	3.93			
12.1	8.77	5.4	3.97			

Table S5. The experimental results of compressibility K_{X1} , K_{X2} and K_{X3} as a function of pressure.

Table S6. The calculated and experimental d-spacing for different crystalline planes.

Plane	Calculated (nm)	Experimental (nm)
(440) (440)	0.2302	0.2068
(⁴ 40) (4 ⁴ 0)	0.2302	0.1790
(800)	0.2459	0.2056

Table S7. The lattice parameters of ZnG under different pressures extracted from HP-PXRD experiments.

P (GPa)	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β	V (Å ³)
0	19.6641(38)	10.3681(22)	14.8933(27)	92.6534(39)	3033.2(10)
1.32	19.6450(31)	10.2897(19)	14.3974(20)	90.5897(41)	2910.1(8)
4.60	19.3281(42)	10.2002(24)	14.0071(28)	92.4180(50)	2759.0(10)
5.39	19.2191(17)	10.1668(07)	13.8861(11)	92.4044(33)	2710.9(3)
6.23	19.2068(36)	10.0844(18)	13.7650(24)	93.2365(76)	2661.9(8)
7.24	19.1086(52)	10.0394(33)	13.6508(42)	93.5490(99)	2613.7(13)
9.38	18.9082(59)	9.9486(36)	13.4371(45)	93.6660(82)	2522.5(14)
10.87	18.8377(52)	9.8424(27)	13.2249(36)	93.7157(84)	2446.8(11)
12.10	18.7174(35)	9.8087(22)	13.1143(29)	94.0106(95)	2401.8(8)