Biocatalytic oxidation of flavone analogues mediated by general biocatalysts: horseradish peroxidase and laccase

Qingsong Yan,^{a,#} Xiaoguang Tang,^{c,#} Baojing Zhang,^a Chunjie Wang,^a Sa Deng,^a Xiaochi Ma,^a Chao Wang,^a Dawei Li,^{b,*} Shanshan Huang,^a and Peipei Dong^{a,*}

^{*a*} College of Pharmacy, Research Institute of Integrated Traditional and Western Medicine, Dalian Medical University, Dalian 116044, P.R. China

^bThe First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road,

Dalian 116011, P.R. China

^c Medicial College of Chifeng University, Chifeng 02400, P.R. China

Supporting Information

List of Supporting Information

Table S1. The ¹ H and ¹³ C NMR spectroscopic data of transformed products 1a, 5a, 8a	and
8b (δ in ppm, J in Hz)	4
Table S2. The ¹ H and ¹³ C NMR spectroscopic data of transformed products 10a, 10b,	10c,
12a and 12b (δ in ppm, J in Hz)	5
Figure S1.The ¹ H NMR spectrum of 1a	6
Figure S2. The ¹³ C NMR spectrum of 1a	6
Figure S3. The HR-MS of 1a	7
Figure S4. The ¹ H NMR spectrum of 5a	7
Figure S5. The ¹³ C NMR spectrum of 5a	8
Figure S6. The HR-MS of 5a	8
Figure S7. The ¹ H NMR spectrum of 8a	9
Figure S8. The ¹³ C NMR spectrum of 8a	9
Figure S9. The ¹ H NMR spectrum of 8b	10
Figure S10. The ¹³ C NMR spectrum of 8b	10
Figure S11. The ¹ H NMR spectrum of 10a	11
Figure S12. The ¹³ C NMR spectrum of 10a	11
Figure S13. The HSQC spectrum of 10a	12
Figure S14. The HMBC spectrum of 10a	12
Figure S15. The ¹ H- ¹ H COSY spectrum of 10a	13
Figure S16. The NOESY spectrum of 10a	13
Figure S17. The HR-MS of 10a	14
Figure S18. The ¹ H NMR spectrum of 10b	14
Figure S19. The ¹³ C NMR spectrum of 10b	15
Figure S20. The HSQC spectrum of 10b	15
Figure S21. The HMBC spectrum of 10b	16
Figure S22. The ¹ H- ¹ H COSY spectrum of 10b	16
Figure S23. The NOESY spectrum of 10b	17
Figure S24. The ¹ H NMR spectrum of 10c	17
Figure S25. The ¹³ C NMR spectrum of 10c	18
Figure S26. The HSQC spectrum of 10c	18
Figure S27. The HMBC spectrum of 10c	19
Figure S28. The ¹ H- ¹ H COSY spectrum of 10c	19
Figure S29. The NOESY spectrum of 10c	20
Figure S30. The HR-MS of 10c.	20
Figure S31. The ¹ H-NMR spectrum of 12a	21
Figure S32. The ¹³ C NMR spectrum of 12a	21
Figure S33. The HR-MS of 12a	22
Figure S34. ¹ H NMR spectrum of 12b	22
Figure S35. The ¹³ C NMR spectrum of 12b	23
Figure S36. The HSQC spectrum of 12b	23
Figure S37. The HMBC spectrum of 12b	24
Figure S38. The ¹ H- ¹ H COSY spectrum of 12b	24
Figure S39. The NOESY spectrum of 12b	25

Figure S40. The HR-MS of 12b	2	25
------------------------------	---	----

No.	1 a ^{<i>a</i>}		$5a^a$		8a ^a		8b ^b	
	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$
I-2		159.3		191.7	5.41 dd (13.0, 2.5)	80.4	5.53 dd (13.0, 2.5)	77.9
3		132.5		105.8	3.16 dd (17.0, 13.0)	40.5	3.23-3.27 m	42.0
					2.77 dd (17.0, 2.5)			
4		182.8		193.3		197.8		196.0
5		164.8		171.3		165.5		163.4
6	6.13 s	94.9	5.95 d (1.5)	97.9	5.92 d (1.5)	97.1	5.90 m	95.8
7		166.0		174.0		168.3		166.7
8	6.41 s	100.16	5.98 d (1.5)	92.1	5.88 d (1.5)	96.2	5.90 m	95.0
9		160.9		160.4		164.9		162.7
10		105.1		102.1		103.4		101.7
1'		122.4		126.3		131.3		132.1
2'	7.32 d (8.0)	131.8	8.04 d (9.0)	134.2	7.37 s	128.2	7.19 d (1.5)	124.4
3'	6.66 d (8.0)	116.1	6.81 d (9.0)	116.0		131.8		120.9
4'		163.2		164.4		155.8		157.7
5'	6.66 d (8.0)	116.1	6.81 d (9.0)	116.0	6.97 d (8.5)	117.4	7.03 d (8.5)	115.8
6'	7.32 d (8.0)	131.8	8.04 d (9.0)	134.2	7.36 d (8.5)	131.2	7.23 dd (8.15, 1.5)	128.3
II-2		159.4			5.41 dd (13.0, 2.5)	80.4	5.47 dd (13.0, 3.0)	18.0
3	6.41 s	117.6			3.16 dd (17.0, 13.0)	40.5	2.70-2.72 m	42.0
					2.77 dd (17.0, 2.5)			
4		183.8				197.8		196.1
5		165.8				165.5		163.4
6	6.22 s	95.2			5.92 d (1.5)	97.1	5.90 m	95.8
7		166.1				168.3		166.7
8	6.34 s	100.2			5.88 d (1.5)	96.2		113.7
9		161.2				164.9		162.7
10		105.3				103.4		101.7
1'		123.7				131.3		130.1
2'	7.73 s	129.3			7.37 s	128.2	7.46 d (8.5)	128.3
3'		117.6				131.8	6.89 d (8.5)	116.1
4'		163.4				155.8		157.9
5'	6.94 d (7.0)	165.8			6.97 d (8.5)	117.4	7.46 d (8.5)	116.1
6'	7.77 d (7.0)	125.0			7.36 d (8.5)	131.2	6.89 d (8.5)	128.3

Table S1. The ¹H and ¹³C NMR spectroscopic data of transformed products 1a, 5a, 8a and 8b (δ in ppm, J in Hz)

^a The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectroscopic data of compounds **1a**, **5a**, **8a** were measured in methanol- d_4 . ^b The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectroscopic data of compound **8b** was measured in DMSO- d_6 .

No.	o. 10a		10b		10c		12a			12b	
	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$		$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$
I-2	8.19 s	155.1	8.15 s	155.2	8.31 s	155.6	5.86	d	85.5	5.29 d	84.6
							(11.5)			(10.0)	
3		125.5		125.4		120.1	2.67	d	52.5	3.17 dd	52.2
							(11.5)			(10.0, 3.0)	
4	0.04 1 (0.0)	177.9		177.9		174.43			193.6		192.6
5	8.06 d (9.0)	128.5	8.04 d (8.5)	128.3	7.92 d (8.5)	126.9	7.68 d(9	2.0)	130.0	7.43 d (8.5)	129.9
6	6.96 dd	116.6	6.93 dd	116.5	6.91 m	115.2	6.49 d (9	9.0)	111.7	6.39 dd	111.6
7	(9.0, 2.5)	1647	(8.5, 2.5)	4		1(2.0			1///	(8.5, 2.0)	1///
/	(974(25))	104.7	(95 + (25))	104./	(20) (20)	102.9	6.26 hm		100.0	(224(20))	100.0
8	6.87 d (2.5)	103.3	6.85 d (2.5)	103.3	6.88 d (2.0)	102.0	6.26 Drs		103.0	6.22 d (2.0)	103.5
9		139.8		139.8		137.5			105.0		104.2
10		110.2		110.1		140.5			113.2		113.5
1 2'	751d(85)	120.5	77.62 d(2.0)	127.7	7.40 brs	49.9	6.00	brd	129.5	6.02 d (8.5)	129.4
2	7.51 u (8.5)	151.5	77.02 u (2.0)	127.5	7.40 015	05.0	(8.5)	oru	130.2	0.92 u (8.5)	130.5
3'	7.21 d (8.5)	118.2		126.0		38.0	676	brd	116.4	667d(85)	116.2
5	7.21 u (8.5)	110.2		120.9		38.0	(8.5)	UIU	110.4	0.07 u (8.5)	110.2
<u></u> 4'		158.1		160.2		195 5	(0.5)		159.4		159.0
	7 21 d (8 5)	118.2	7 07 d (8 0)	111.6	6 90 m	126.5	676	brd	116.4	6 67 d (8 5)	116.2
5	7.21 u (0.5)	110.2	7.07 u (0.0)	111.0	0.90 III	120.5	(8.5)	oru	110.4	0.07 u (0.5)	110.2
6'	7 51 d (8 5)	131.5	7 48 dd	133 3	7 40 dd	145.2	6.90	brd	130.2	6 92 d (8 5)	130.3
Ũ	(iii) u (iiii)	10110	(80, 2.0)	100.0	(80.15)	1.10.2	(8.5)	oru	100.2	0.52 a (0.5)	100.0
			(0.0, 2.0)		(0.0, 1.0)		(0.0)				
II-2	6.25 s	104.9	6.32 s	87.5	8.16 s	155.6	5.86	d	85.5	5.55 d (5.0)	82.4
							(11.5)				
3	7.37 s	78.4		90.0		120.1	2.67	d	52.5	2.94 dd	50.5
							(11.5)			(5.0, 3.0)	
4		189.6		189.1		174.43			193.6		194.9
5	7.79 d (8.5)	129.5	7.66 d (8.5)	130.7	7.82 d (8.5)	126.9	7.68 d (9	9.0)	130.0	7.61 d (8.5)	130.0
6	6.56 d (8.5,	112.3	6.53 dd (8.5,	113.0	6.91 m	115.2	6.49 d (9	9.0)	111.7	6.49 dd	111.7
	2.5)		2.5)							(8.5, 2.0)	
7	7.79	167.1		167.9		162.9			166.6		166.3
8	6.247 d (2.5)	104.5	6.46 d (2.5)	104.3	6.84 d (2.0)	102.0	6.26 brs		103.6	6.45 d (2.0)	103.9
9	7.79	159.7		163.1		157.3			165.0		166.0
10		115.3		114.3		146.5			115.2		116.9
1'	6.75	130.0		129.8		49.9			129.5		129.3
2'	7.37 d (8.5)	129.3	7.39 d (9.0)	128.0	5.44 m	83.8	6.90	brd	130.2	7.09 d (8.5)	128.4
	((8.5)				
3'	6.75 d (8.5)	116.3	6.79 d (9.0)	116.4	3.08 dd	38.0	6.76	brd	116.4	6.79 d (8.5)	116.4
				6	(17.5, 4.0)		(8.5)				
					2.79 dd						
41		150.1		150.1	(17.5, 2.5)	105.5			150.4		159.5
4	(75 + (95))	159.1	$(70 \pm (0.0))$	139.1	6.04 -1	195.5	676	أمسط	159.4	(70 + (9.5))	158.5
2	0.75 a (8.5)	110.3	0.79 a (9.0)	110.4 6	0.04 d	120.5	0./0	ora	110.4	o. /9 a (8.5)	110.4
6'	7 37 d (8 5)	120.2	739 d (90)	128.0	(10.0) 6 80 dd	145.2	(0.3)	brd	130.2	7.09 d (8.5)	128/
0	, u (0)	127.5	() u ())	120.0	(10.0, 2.0)	140.2	(8.5)	oru	150.2	(0.5) u (0.5)	120.4

Table S2. The ¹H and ¹³C NMR spectroscopic data of transformed products 10a, 10b, 10c, 12a and 12b (δ in ppm, J in Hz)

^{*a*} The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectroscopic data of compounds **10a**, **10b**, **10c** were measured in DMSO-*d*₆. ^{*b*} The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectroscopic data of compound **12a**, **12b** was measured in methanol-*d*₄.

Figure S1.The ¹H NMR spectrum of 1a

Figure S3. The HR-MS of 1a

Figure S5. The ¹³C NMR spectrum of 5a

Figure S6. The HR-MS of 5a

20161206-SN2-2 #9-11 RT: 0.09-0.10 AV: 3 SB: 3 0.94-0.96 NL: 3.9 T: FTMS + p ESI Full ms [150.00-1200.00]

Figure S12. The ¹³C NMR spectrum of 10a

Figure S13. The HSQC spectrum of 10a

Figure S14. The HMBC spectrum of 10a

Figure S15. The ¹H-¹H COSY spectrum of 10a

Figure S16. The NOESY spectrum of 10a

Figure S17. The HR-MS of 10a

Figure S18. The ¹H NMR spectrum of 10b

Figure S20. The HSQC spectrum of 10b

Figure S19. The ¹³C NMR spectrum of 10b

Figure S21. The HMBC spectrum of 10b

Figure S22. The ¹H-¹H COSY spectrum of 10b

Figure S23. The NOESY spectrum of 10b

Figure S24. The ¹H NMR spectrum of 10c

Figure S25. The ¹³C NMR spectrum of 10c

Figure S27. The HMBC spectrum of 10c

Figure S28. The ¹H-¹H COSY spectrum of 10c

Figure S29. The NOESY spectrum of 10c

Figure S30. The HR-MS of 10c.

Figure S31. The ¹H-NMR spectrum of 12a

Figure S32. The ¹³C NMR spectrum of 12a

Figure S33. The HR-MS of 12a

Figure S34.¹H NMR spectrum of 12b

Figure S37. The HMBC spectrum of 12b

Figure S38. The ¹H-¹H COSY spectrum of 12b

Figure S39. The NOESY spectrum of 12b

Figure S40. The HR-MS of 12b

