## **Electronic Supplementary Information**

## Sonochemistry-enabled uniform coupling of SnO<sub>2</sub> nanocrystals with

## graphene sheets as anode materials for lithium-ion batteries

Xiaoyan Han,<sup>a</sup> Ran Li,<sup>b</sup> Shengqiang Qiu,<sup>b</sup> Xiaofang Zhang,<sup>a</sup> Qing Zhang<sup>\* a, c</sup> and Yingkui Yang<sup>a, b, c</sup>

<sup>a</sup> Key Laboratory of Resources Green Conversion and Utilization of State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China. Email: qingzhang@mail.scuec.edu.cn

<sup>b</sup> School of Materials Science and Engineering, Hubei University, Wuhan 430062, China

<sup>c</sup> Hubei Engineering Technology Research Centre for Energy Polymer Materials, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China

| Electrode                 | Synthesize    | Reversible                 | Rate                            | Cycling                           | Ref. |
|---------------------------|---------------|----------------------------|---------------------------------|-----------------------------------|------|
| description               | method        | capacity                   | capability                      | stability                         |      |
| SnO <sub>2</sub> /RGO     | Sonochemical  | 650 mAh g <sup>-1</sup>    | 273 mAh g <sup>-1</sup> a       | t 87% after 100                   | This |
| (30  wt %)                | method        | at 100 mA g <sup>-1</sup>  | $500 \text{ mA s}^{-1}$         | cycles (100 mA                    | work |
| (30                       | methou        | ut 100 mm g                | 500 111 1 5                     | g <sup>-1</sup> )                 | WOLK |
| SnO <sub>2</sub> /RGO     | Microwave-    | 350 mAh 9-1                | 300 mAh g <sup>-1</sup> a       | t $62 \text{ mAh } \text{g}^{-1}$ | [1]  |
| (40  wt %)                | assisted      | at 300 mA $\sigma^{-1}$    | $500 \text{ mA } \text{g}^{-1}$ | after 50 cycles                   | [-]  |
| (10                       | method        | ut 500 mm t g              | 500 111 1 5                     | $(100 \text{ mA s}^{-1})$         |      |
| SnO <sub>2</sub> /graphen | Solar         | 497 mAh o <sup>-1</sup>    | 161 mAh g <sup>-1</sup> a       | t $84\%$ mAh g <sup>-1</sup>      | [2]  |
| e wranned                 | reduction     | at $100 \text{ mA s}^{-1}$ | $500 \text{ mA s}^{-1}$         | after 100 cycles                  | [-]  |
| carbon                    | technique     | ut 100 mm 1 g              | 200 111 1 8                     | $(50 \text{ mA s}^{-1})$          |      |
| nanotubes (74             | teeninque     |                            |                                 | (00 m 1 g )                       |      |
| wt %)                     |               |                            |                                 |                                   |      |
| $SnO_{x}/N$ -             | Sacrificial   | 651 mAh g <sup>-1</sup>    | 231 mAh g <sup>-1</sup> a       | t 435 mAh $g^{-1}$                | [3]  |
| doped Carbon              | template      | at 100 mA g <sup>-1</sup>  | 600 mA g <sup>-1</sup>          | after 500 cycles                  | [9]  |
| (55.6 wt.%)               | method with   |                            |                                 | $(1000 \text{ mA g}^{-1})$        |      |
| ()                        | ethanol steam |                            |                                 | (                                 |      |
|                           | reforming     |                            |                                 |                                   |      |
|                           | process       |                            |                                 |                                   |      |
| SnO <sub>2</sub> /graphen | Solution-     | 690 mAh g <sup>-1</sup>    |                                 | 63% after 20                      | [4]  |
| e (26 wt. %)              | based process | at 100 mA g <sup>-1</sup>  |                                 | cycles (100 mA g <sup>-</sup>     |      |
| , ,                       | 1             | U                          |                                 | 1)                                |      |
| rGO/SnO <sub>2</sub> (a)  | Self-assembly | 400 mAh g <sup>-1</sup>    | 305 mAh g-                      | 78% after 100                     | [5]  |
| CF                        | approach      | at 100 mA g <sup>-1</sup>  | <sup>1</sup> at 500 mA          | cycles (100 mA g <sup>-</sup>     |      |
|                           |               | U                          | g-1                             | 1)                                |      |
| Graphene-                 | Sn-nanorod-   | 718.2 mAh g <sup>-</sup>   | 379.8 mAh                       | 52% after 200                     | [6]  |
| wrapped                   | templated     | <sup>1</sup> at 100 mA     | g <sup>-1</sup> at 500          | cycles (100 mA g <sup>-</sup>     |      |
| SnO <sub>2</sub>          | self-assembly | g-1                        | mA g <sup>-1</sup>              | 1)                                |      |
| nanotubes                 | route         | -                          | -                               | -                                 |      |
| (SnO <sub>2</sub> -       |               |                            |                                 |                                   |      |
| NTs/G) (20.6              |               |                            |                                 |                                   |      |
| wt. %)                    |               |                            |                                 |                                   |      |

Table S1 The comparison of various  $SnO_2$ -based composites.



**Fig. S1** (a) Rate performance, (b) cycling performance and coulombic efficiency at 100 mA  $g^{-1}$  of SnO<sub>2</sub>/graphene nanocomposites with different GO content.

## References

- 1. T. Q. Chen, L. K. Pan, X. J. Liu, K. Yu and Z. Sun, *RSC Adv.*, 2012, 2, 11719.
- 2. M. Sahoo and S. Ramaprabhu, RSC Adv., 2017, 7, 13789.
- C. Zhu, D. H. Wei, Y. L. Wu, Z. Zhang, G. H. Zhang, J. F. Duan, L. J. Li, H. L. Zhu, Z. Y. Zhu and Z. Y. Chen, *J. Alloys Compd.*, 2019, 778, 731.
- 4. J. F. Liang, W. Wei, D. Zhong, Q. L. Yang, L. D. Li and L. Guo, *ACS Appl. Mater. Interfaces*, 2012, **4**, 454.
- H. G. Li, S. B. Wang, M. J. Feng, J. P. Yang and B. M. Zhang, *J Mater Sci.*, 2018, 53, 11607.
- P. Wu, X. L. Xu, Q. Y. Zhu, X. S. Zhu, Y. W. Tang, Y. M. Zhou and T. H. Lu, J. Alloys Compd., 2015, 626, 234.