Supplementary Data

Synthesis of Mg and Zn Diolates and their Use in Metal Oxide Deposition

Peter Frenzel,^a Andrea Preuß,^a Jörn Bankwitz,^b Colin Georgi,^b Fabian Ganss,^d Lutz Mertens,^f Stefan E. Schulz,^{b,c} Olav Hellwig,^{d,e} Michael Mehring,^f Heinrich Lang^a*

- a) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D–09107 Chemnitz, Germany
- b) Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie– Campus 3, D–09126 Chemnitz, Germany
- c) Technische Universität Chemnitz, Center for Microtechnologies, D–09107 Chemnitz, Germany
- d) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Physics, D–09107 Chemnitz, Germany
- e) Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, D–01328 Dresden, Germany
- f) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Coordination Chemistry, D–09107 Chemnitz, Germany
- ^{*)} Email: heinrich.lang@chemie.tu–chemnitz.de; Phone: +49(0)371–531–21210; Fax.: +49(0)371–531–21219.

Table of Contents

Figures S1 – S4: SEM images of layers A – D	S3
Figures S5 – S10: EDX spectra of layers A – F	S5
Figures S11 – S16: Survey XPS spectra of layers A – F	S7
Figures S17 – S21: Detail XPS spectra of layers A, B, D – F	S9
Figures S22 – S24: GIXRD spectra of layers A – C	S11
Table S1: Elemental composition of the surface of layers $\mathbf{A} - \mathbf{F}$	S12
NMR spectra of 3, 5 and 7	S13
IR spectra of 3, 5 and 7	S18

SEM Images

Figure S1. SEM images of as-deposited layer **A** (top view, left) and a cross section image (right) using **7** as CVD precursor, deposited on Si/SiO₂ substrates.

Figure S2. SEM images of as-deposited layer **B** (top view, left) and a cross section image (right) using **7** as CVD precursor, deposited on Si/SiO₂ substrates.

Figure S3. SEM images of as-deposited layer **C** (top view, left) and a cross section image (right) using **7** as CVD precursor, deposited on Si/SiO₂ substrates.

Figure S4. SEM images of as-deposited layer **D** (top view, left) and a cross section image (right) using **7** as CVD precursor, deposited on Si/SiO₂ substrates.

EDX Spectra

Figure S5. EDX spectra of layer A by using an electron beam energy of 15 keV obtained from 7 by CVD.

Figure S6. EDX spectra of layer **B** by using an electron beam energy of 15 keV (left) and 3 keV (right) obtained from **7** by CVD showing the characteristic pattern of Zn, O, C and Si.

Figure S7. EDX spectra of layer **C** by using an electron beam energy of 15 keV (left) and 3 keV (right) obtained from **7** by CVD showing the characteristic pattern of Zn, O, C and Si.

Figure S8. EDX spectra of layer **D** by using an electron beam energy of 15 keV (left) and 3 keV (right) obtained from **7** by CVD showing the characteristic pattern of Zn, O, C and Si.

Figure S9. EDX spectrum of layer **E** by using an electron beam energy of 3 keV obtained from **5** by spin–coating showing the characteristic pattern of Mg, O, C and Si.

Figure S10. EDX spectrum of layer **F** by using an electron beam energy of 3 keV obtained from **7** by spin–coating showing the characteristic pattern of Zn, O, C and Si.

XPS Spectra

Survey Spectra of Layers A-F

Figure S11. *Ex situ* XPS spectra of the surface (left) and of the film (right) of layer **A** obtained from **7** by CVD.

Figure S12. *Ex situ* XPS spectra of the surface (left) and of the film (right) of layer **B** obtained from **7** by CVD.

Figure S13. Ex situ XPS spectrum of the surface of layer C obtained from 7 by CVD.

Figure S14. *Ex situ* XPS spectra of the surface (left) and of the film (right) of layer **D** obtained from **7** by CVD.

Figure S15. Ex situ XPS spectrum of the surface of layer E obtained from 5 by spin-coating.

Figure S16. Ex situ XPS spectrum of the surface of layer F obtained from 7 by spin-coating.

Detailed spectra of layers A, B, D - F

Figure S17. *Ex situ* detailed XPS spectra of the Zn $2p_{3/2}$ peak (left), O 1s peak (middle) and C 1s peak (right) of layer **A** obtained from **7** by CVD.

Figure S18. *Ex situ* detailed XPS spectra of the Zn $2p_{3/2}$ peak (left), O 1s peak (middle) and C 1s peak (right) of layer **B** obtained from **7** by CVD.

Figure S19. *Ex situ* detailed XPS spectra of the Zn $2p_{3/2}$ peak (left), O 1s peak (middle) and C 1s peak (right) of layer **D** obtained from **7** by CVD.

Figure S20. Ex situ detailed XPS spectra of the Mg 2p peak (left) and O 1s peak (right) of layer E

obtained from **5** by spin–coating.

Figure S21. *Ex situ* detailed XPS spectra of the Zn $2p_{3/2}$ peak (left), O 1s peak (middle) and C 1s peak (right) of layer **F** obtained from **7** by spin–coating.

GIXRD Spectra

Figure S22. GIXRD spectra of layer A with reflections of ZnO (red), applied deposition parameters are given in Table 3.

Figure S23. GIXRD spectra of layer **B** with reflections of ZnO (red), applied deposition parameters are given in Table 3.

Figure S24. GIXRD spectra of layer **C** with reflections of ZnO (red), applied deposition parameters are given in Table 3.

Layer _	Surface composition [mol%]				
	Zn	Mg	0	С	F
А	12.2		29.8	58.0	
В	30.0		34.1	37.9	
С	28.4		36.0	35.6	
D	32.5		35.0	32.5	
Е		30.9	45.2	17.6	6.3
F	30.5		51.1	18.4	

Table S1. Elemental composition of the surface of layers $\mathbf{A} - \mathbf{F}$.

NMR Spectra

125

115

105

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

Chemical shift [ppm]

¹³C NMR spectrum of **5** in CDCl₃.

HMQC NMR spectrum of 5 in CDCl₃.

HMBC NMR spectrum of **5** in CDCl₃.

Chemical shift [ppm]

HMQC NMR spectrum of 7 in C₆D₆.

HMBC NMR spectrum of 7 in C₆D₆.

IR Spectra

IR spectrum of 3 (CHCl₃, NaCl).

