Supporting Information

One-pot synthesized Cu/Au/Pt trimetallic nanoparticles as a novel enzyme mimic

for biosensing applications

Pian Wu,^a Ping Ding,^a Xiaosheng Ye,^{*ab} Lei Li, ^c Xiaoxiao He^b and Kemin Wang^b

^a XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China.

^b State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, Hunan, China.

 ^c Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China

*To whom correspondence should be addressed. Tel: 86-731-84805462; Fax: 86-731-84805462; E-mail: yexiaosheng@csu.edu.cn.

Fig. S1 The effects of the contents of (A) CuSO₄, (B) HAuCl₄ and (C) K₂PtCl₄ on the properties of Cu/Au/Pt TNPs.

Fig. S2 The concentration dependence of $\rm H_2O_2$ in the presence of Cu/Au/Pt TNPs.

Fig. S3 The optimization of different concentrations of Cu/Au/Pt TNPs for TMB-H $_2O_2$ reaction.

Fig. S4 Absorption at 650 nm of different substrate (dissolved O_2 , ClO⁻, Fe(CN)₆³⁻, NO₂⁻, ONOO⁻ and H₂O₂) in the presence of the same amount of TMB and Cu/Au/Pt TNPs.

Enzyme mimics	Linear range	LOD	Ref.
H-MOFs	0-800 μΜ	1.0 µM	[1]
glycine-MIL-53(Fe)	0.10-10 μΜ	0.049 µM	[2]
Fe ₃ O ₄ /graphene	0.8-334.4	0.078 μΜ	[3]
Au/Pt NRs	1-250 μM	0.04 µM	[4]
Au-Ag/C NC	0.8-90 µM 90-	0.3 µM	[5]
	500 μM		
Pt-Au/reduced graphene sheets	1-1780	0.31 µM	[6]
	1780–16800 μM		
Cu-SBA-15	0.8 - 60 mM	3.7 µM	[7]
Ni(OH) ₂ /RGO/Cu ₂ O	0.5 -7.5 mM	0.20 µM	[8]
Cu/Au/Pt TNPs	0-1000 nM	0.017 μΜ	This work

Table S1 Performance comparison of the proposed Cu/Au/Pt TNPs with other $\rm H_2O_2$ sensors

References

- Y. Yin, C. Gao, Q. Xiao, G. Lin, Z. Lin, Z. Cai and H. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 29052-29061.
- 2. W. Dong, L. Yang and Y. Huang, Talanta, 2017, 67, 359-366.
- 3. Y. Zhao, D. Huo, J. Bao, M. Yang, M. Chen, J. Hou, H. Fa and C. Hou, Sensor Actuat. B-Chem., 2017, 244, 1037-1044.
- 4. Y. Sun, R. Wang, X. Liu, G. Shan, Y. Chen, T. Tong and Y. Liu, Microchim. Acta., 2018, 185, 445.
- L. Zhang, W. Hou, Q. Lu, M. Liu, C. Chen, Y. Zhang and S. Yao, Anal. Chim. Acta., 2016, 947, 23-31.
- G. X. Yu, W. X. Wu, X. Q. Pan, Q. Zhao, X. Y. Wei and Q. Lu, Sensors, 2015, 15, 2709-2722.
- 7. J. Mu, Y. He and Y. Wang, Talanta, 2016, 148, 22-28.
- 8. X. Wu, F. Li, C. Zhao and X. Qian, Sensor Actuat. B-Chem., 2018, 274, 163-171.