Supporting Information

Controlled Phase Evolution from Cu_{0.33}Co_{0.67}S₂ to Cu₃Co₆S₈ Hexagonal Nanosheet as Oxygen Evolution Reaction Catalysts

Jingjing Feng,^{1ab} Yu Meng,^{1a} Zixuan Lian,^a Liang Fang,^b Ziyao Long,^a Yongtao Li,^{*b} Yun Song^{*ac}

^{*a.*} Department of Materials Science, Fudan University, Shanghai 200433, China

^{b.} School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China

^{c.} Shanghai Innovation Institute for Materials, Shanghai 200444, P. R. China

^{1.} These two authors have equal contribution to this work

Fig. S1. high-resolution TEM image of $Cu_{0.33}Co_{0.67}S_2/CNT$.

Fig. S2. (a) XRD pattern and SEM image of $CuCo(OH)_{2.}$

Fig. S5. the corresponding SAED pattern of (a) $Cu_{0.33}Co_{0.67}S_2$, (b) $CuCo_2S_4$ and (c) $Cu_3Co_6S_8$.

Fig. S6. CVs of (a) $CuCo_2S_4$ and (b) $Cu_3Co_6S_8$ at various scanning rates.

Fig.S7. Cyclic voltammograms of (a) $Cu_{0.33}Co_{0.67}S_2$, (b) $CuCo_2S_4$ and (c) $Cu_3Co_6S_8$ at 20 mV/s in 1 M KOH.

Fig.S8. (a) XRD pattern of the Cu-Co-S product at 350 °C. (b) Rietveld refinement of the XRD pattern of the Cu-Co-S product at 350 °C. (c) LSV curve of the product at 350 °C. (d) The Relationship of the content of octahedron in products at different temperatures with their overpotential performance.

Catalyst	Overpotential@1 0 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	C _{dl} (mF cm ⁻²)	TOF (s ⁻¹)	R _{ct}
Cu _{0.33} Co _{0.67} S ₂	284	86	76.32	13.512 s ⁻¹ @280 mV	
				32.045 s ⁻¹ @320 mV	47
				49.940 s ⁻¹ @340 mV	
CuCo ₂ S ₄	310	90	31.26	6.701 s ⁻¹ @280 mV	
				9.799s⁻¹@300 mV	54
				16.156s ⁻¹ @320 mV	
				27.518 s ⁻¹ @340 mV	
Cu ₃ Co ₆ S ₈	320	91	15.56	4.244 s ⁻¹ @280 mV	
				6.548 s ⁻¹ @300 mV	72
				11.099 s ⁻¹ @320 mV	
				19.570 s ⁻¹ @340 mV	
CoS ₂	343	98	67.03	2.081 s ⁻¹ @280 mV	
				2.8112 s ⁻¹ @300 mV	48
				4.905 s⁻¹ @320 mV	
				9.638 s ⁻¹ @340 mV	

Table. S1. Summary of the electrochemical activities of $Cu_{0.33}Co_{0.67}S_2$, $CuCo_2S_4$, $Cu_3Co_6S_8$ and CoS_2 for OER.

Table. S2. Rietveld refinement results for the XRD patterns of the $Cu_{0.33}Co_{0.67}S_2$ and CoS_2 .

Sample	Phase	Space	Lattice parameters			Amount	ſ
		group	a(Å)	b(Å)	<i>c</i> (Å)	(wt%)	3
CoS ₂	CoS ₂	Pa-3	5.524	5.524	5.524	100	1.10
Cu _{0.33} Co _{0.67} S ₂	CoS ₂	Pa-3	5.638	5.638	5.638	100	1.05

Table. S3. Comparison of OER performances of $Cu_{0.33}Co_{0.67}S_2$ with other reported similar

Material	Electrolyte (KOH)	Scan rate (mV s ^{−1})	η ₁₀ (mv)	Ref.
Co ₂ P@Co ₃ O ₄	1.0 M	5	335	1
Co ₃ S ₄ @NCNTs	0.1 M	5	430	2
CoS ₂ NTA/CC	1.0 M	10	276	3
Co-doped Ni–Mn LDH	1.0M	10	310	4
CoS ₂ HNSs	1.0 M	10	290	5
Co ₉ S ₈ /Zn _{0.8} Co _{0.2} S@C	0.1 M	5	292	6
Co9S8@NS-3DrGO	1.0 M	5	317	7
oxygenated-CoS ₂ -MoS ₂	1.0 M	2	272	8
Co _x S _y @C	0.1 M	5	470	9
HPMS Co ₃ O ₄ /CoS ₂	1.0 M	2	280	10
Zn _x Co _{3-x} O ₄	1.0 M	10	435	11
Co3O4 Nanoflakes	1.0M	5	451	12
CoSe₂@C	1.0 M	10	330	13
CoSe₂@C-CNT	1.0 M	5	306	14
Zn-Doped CoSe ₂	1.0 M	2	356	15
CoFeP NSs	1.0 M	5	305	16
octahedral Co_3O_4 particles	1.0 M	2	301	17
Co ₃ O ₄ @rGO	1.0 M	2	313	18
CoS₂@N,S-GO	0.1 M	10	390	19
$Cu_{0.33}Co_{0.67}S_2$	1 M	10	284	This work

non-noble metal OER electrocatalysts.

Reference

- L. H. Yao, N. Zhang, Y. Wang, Y. M Ni, D. P. Yan and C. W. Hua, *J. Power Sources*, 2018, 374, 142.
- 2 H. J. Wang, Z. P. Li, G. H. Li, F. Peng and H. Yu, CATAL TODAY, 2015, 245, 74.
- 3 C. Guan, X. M. Liu, A. M. Elshahawy, H. Zhang, H. J. Wu, S. J. Pennycook and J. Wang, *Nanoscale Horiz.*, 2017, **2**, 342.
- 4 Y. Wang, X. H. Liu, N. Zhang, G. Z. Qiu and R. Z. Ma, APPL CLAY SCI, 2018, 165, 277.
- 5 X. Y. Ma, W. Zhang, Y. D. Deng, C. Zhong, W. B. Hu and X. P. Han, *Nanoscale*, 2018, **10**, 4816.
- 6 Z. L. Chen, M. Liu, R. B. Wua, J. CATAL, 2018, 361, 322.
- Y. Li, Y. Z. Zhou, H. J. Wen, J. Yang, C. Maouche, Q. Q. Liu, Y. Y. Wu, C. C. Cheng, J. Zhu and X.
 N. Cheng, *DALTON T.*, 2018, 47, 14992.
- 8 J. G. Hou, B. M. Zhang, Z. W. Li, S. Y. Cao, Y. Q. Sun, Y. Z. Wu, Z. M. Gao and L. C. Sun, ACS CATAL, 2018, 8, 4612.
- 9 B. L. Chen, R. Li, G. P. Ma, X. L. Gou, Y. Q. Zhu and Y. D. Xia, *Nanoscale*, 2015, **7**, 20674.
- 10 M. M. Guo, K. Xu, Y. H. Qu, F. Y. Zeng and C. L. Yuan, *ELECTROCHIM ACTA*, 2018, 268, 10.
- 11 L. Wang, T. J. Meng, C. X. Chen, Y. W. Fan, Q. Q. Zhang, H. Wang and Y. F. Zhang, J COLLOID INTERF SCI, 2018, 532, 650.
- 12 S. Q. Chen, Y. F. Zhao, B. Sun, Z. M. Ao, X. Q. Xie, Y. Y. Wei and G. X.Wang, ACS APPL MATER INTER, 2015, **7**, 3306.
- 13 X. B. Liu, Y. C. Liu and L. Z. Fan, J. Mater. Chem. A., 2017, 5, 15310.
- 14 M. Y. Yuan, M. Wang, P. L. Lu, Y. Sun, S. Dipazir, J. X. Zhang, S.W. Li and G. J. Zhang, *J COLLOID INTERF SCI*, 2019, **533**, 503.
- Q. C. Dong, Q. Wang, Z. Y. Dai, H. J. Qiu and X. C. Dong, ACS APPL MATER INTER, 2016, 8, 26902.
- 16 H. Xua, J. J. Wei, C. F. Liu, Y. P. Zhang, L. Tian, C. q. Wang and Y. k. Du, *ELECTROCHIM ACTA*, 2018, **288**, 82.
- 17 K. Wu, D. Z. Shen, Q. T. Meng and J. H. Wang, J COLLOID INTERF SCI, 2018, 530, 146.
- Y. F. Zhao, S. Q. Chen, B. Sun, D.W. Su, X. D. Huang, H. Liu, Y. M. Yan, K. N. Sun and G. X.
 Wang, SCI REP, 2015, 5, 7629.
- 19 P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, ACS CATAL, 2015, 5, 3625