Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

NiFe₂O₄@ Nitrogen-Doped Carbon Hollow Spheres with highly

efficient and recyclable adsorption of tetracycline hydrochloride

Zhe chen^a, Dongzhao mu^a, Feng chen^b, and Naidi tan^{a*}

^a School of Material Science and Technology, Jilin Institute of Chemical Technology,

Jilin, 132022, PR China,

E-mail: chenzhecz999@163.com

^b Jinlin Petrochemical Company Organic Synthetic Plants, Jinlin, 132021, P. R.

China

1. Characterizations

A D/Max-RB X-ray diffractometer (Rigaku, Japan) was used to obtain X-ray diffraction (XRD) patterns. TEM images were obtained on a transmission electron microscope (JEM-2100F, JEOL, Japan) with an accelerating voltage of 200 kV. FESEM images were recorded on a field emission scanning electron microscope (JSM-7500, JEOL, Japan) with an accelerating voltage of 15 kV. Chemical states of elements were measured on an X-ray photoelectron spectroscopy (XPS) equipped with an ultrahigh vacuum VG ESCALAB 210 electron spectrometer. Fourier transform infrared spectra (FTIR) were measured on an IR Affinity-1 FTIR spectrometer (Shimadzu, Japan). N₂ adsorption-desorption isotherms were measured on a Micromeritics ASAP 3020 equipment (USA). All as-synthesized samples were degassed at 180 °C for 5 h prior to adsorption measurements. Specific surface area was determined by the multipoint Brunauer–Emmett–Teller (BET) method. The magnetization curve was conducted on Quantum Design MPMS-7 SQUID magnetometer at 300 K under varying magnetic field.

2. Adsorption experiment

Sample	Average crystal size [nm] (standard deviation)	S _{BET} [m ² g ⁻¹]	Pore volume [cm ³ g ⁻¹]
NiFe ₂ O ₄	6.46	21.85	0.04
NiFe ₂ O ₄ /NCHS(before)	5.34	335.9	0.68
NiFe ₂ O ₄ /NCHS(after)	3.38	268.8	0.22

Table 1. The corresponding physicochemical properties of prepared samples.

Table 2. Pseudo-first-order and pseudo-second-order kinetic parameters of the asprepared samples.

	_	Pseudo-first-order model			Pseudo-second-order model			
Samples	$q_{e,exp}$ (mg.g ⁻¹)	q _{e,cal} (mg.g ⁻¹)	k ₁ (×10 ⁻² min ⁻¹)	R ²	$q_{e,cal}$ (mg.g ⁻¹)	K_2 (×10 ⁻² g.mg ⁻¹ ·min ⁻¹)	R ²	
NiFe	29.11	29.33	13.68	0.890	29.96	1.60	0.989	
NiFe- NCHS	41.28	27.45	3.39	0.891	41.84	3.44	0.999	

 Table 3. Parameters of Langmuir isotherm and Freundlich isotherm for TC adsorption

 on NiFe₂O₄/NCHS.

	Lan	gmuir model		Freundlich model				
Samples	q _{max} (mg.g ⁻¹)	K _L (L mg ⁻¹)	R ²	K _F (mg/g)(L/mg) $^{1/n}$	n	R ²		
NiFe- NCHS	271.739	0.048	0.996	32.478	2.258	0.960		

Table	4.	The	maximum	adsorption	capacity	for	TC	by	different	adsorbents	for
compa	risc	on									

Samples	q _{max} (mg/g)	References	
Mag@ZnO-Co ₃ O ₄	128	1	
graphene oxide	212	2	
GO-MPs	39.1	3	
Ni nanoparticles/silica (Ni NPs/SiO ₂)	381.3	4	
MWCNT	269.54	5	
activated sludge	91	6	
NHCS-NiFe	271.739	This work	

Figure S1. Adsorption of TC by magnetic composites with different concentration of raw materials.

Figure S2. The SEM images of NiFe₂O₄/C samples after absorption.

Figure S3. X-ray photoelectron spectroscopy (XPS) spectra of (a) the survey spectrum,

(b) Ni 2p, (c) Fe 2p, (d) O 1s for NiFe₂O₄/NCHS composite after adsorption.

Figure S4. N_2 adsorption/desorption isotherm and the corresponding pore size distribution (inset) of the adsorbed NiFe₂O₄/NCHS composite.

Figure S6. (a) Regeneration efficiency of NaOH (0.001 M) for NiFe2O4/NCHS with tetracycline (b)Regeneration efficiency of NH3·H2O (0.001 M) for NiFe2O4/NCHS with tetracycline (initial tetracycline concentration: 20 mg·L -1, pH: 5, adsorbent dosage: 0.05 g,temperature: 298 K).

■ REFERENCES

- (1) L.L. Lian, J.Y. Lv, D.W. Lou, ACS Sustainable Chem. Eng. 2017,5,10298-10306.
- (2) Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, *J. Colloid Interface Sci.* 2012, **368**,540-546.
- (3) Y.X. Lin, S. Xu, L. Jia, Chem. Eng. J. 2013,225,679–685.
- (4) S.W. Zhang, H.H. Gao, J.X. Li, Y.S. Huang, A. Alsaedi, T. Hayat, X.J. Xu, X.K.Wang, J. Hazard.Mater. 2017,321,92–102.
- (5) L. Zhang, X.Y. Song, X.Y. Liu, L.J. Yang, F. Pan, J.N. Lv, *Chem.l Eng. J.* 2011,**178** ,26-33.
- (6) X. Song, D. Liu, G. Zhang, M. Frigon, X. Meng, K. Li, *Bioresour. Technol.* 2014, 151,428–431.