Supporting Information

A turn-on fluorescence sensor for highly selective detection of Al^{3+} based on diarylethene

and its application by test strips

Junfei Lv, Yinglong Fu, Gang, Liu, Congbin Fan* and Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China

*Corresponding authors. Tel./fax: +0791 83805212 (C. Fan), +86 791 83831996 (S. Pu).

E-mail: congbinfan@163.com (C. Fan), pushouzhi@tsinghua.org.cn (S. Pu).

Contents

Figure S1. ^1^H NMR spectrum of 1O.

Figure S2. ^13^C NMR spectrum of 1O.

Figure S3. IR spectra of 1O.

Figure S4. MS-ESI spectrum of 1O.

Figure S5. Absorption spectra changes of 1C induced by Al^{3+}/EDTA in methanol solution (2.0 × 10^{-5} mol L^{-1}).

Figure S6. The binding constant of 1O with Al^{3+} was calculated to be 4.72 × 10^{4} L·mol^{-1}.

Figure S7. The limit of detection (LOD) for Al^{3+} was 1.24× 10^{-5} mol L^{-1}.

Figure S8. Fluorescence photos of Al^{3+} at different concentrations.
Figure S1. 1H NMR spectrum of 1O.
Figure S2. 13C NMR spectrum of 1O.
Figure S3. IR spectra of 1O.
Figure S4. MS-ESI spectrum of 1O and 1O-Al^{3+}.
Figure S5. Absorption spectra changes of 1C induced by Al$^{3+}$/EDTA in methanol solution (2.0 × 10$^{-5}$ mol L$^{-1}$).
Figure S6. Hildebrand-Benesi plot based on the 1 : 1, the association constant of 1O with Al$^{3+}$ was calculated to be 4.72×10^4 L·mol$^{-1}$.
Figure S7. The limit of detection (LOD) for Al\(^{3+}\) was 1.24 × 10\(^{-5}\) mol L\(^{-1}\).
Figure S8. Fluorescence photos of Al$^{3+}$ at different concentrations.