Supporting Information

One-pot Synthesis and Property Study on Thieno[3,2b]furan Compounds

Weimin Ma,^a Jiawei Huang,^a Chao Li,^a Yueren Jiang,^a Baolin Li,^{a,*} Ting Qi,^{a,*} Xiaozhang Zhu^{b,*}

^a School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Table of Contents

1. GC standard curve of BTBF	S2
2. DFT calculations	S3
3. Experimental section	S9
4. Measurement of photophysical data	
5. ¹ H and ¹³ C NMR spectra and HRMS spectra	
6. References	S38

1. GC Standard curve of BTBF

Table S1. GC standard curve of BTBF with 1,1,2,2-tetrachloroethane (TCE).

(total ri	un time: 17.5 min	. Retention time	: TCE 4.69 min; BTE	3F 12.86 mi	n	
Entry	Mass of BTBF	Mass of TCE	M = Mass of BTBF	GC Area	GC Area	$r - \frac{Area \ of \ BTBF}{area}$
	(mg)	(mg)	$y = \frac{1}{Mass of TCE}$	of BTBF	of TCE	$x = \frac{1}{Area of TCE}$
1	0	0	0	0	0	0
2	0.075	160	0.00046875	20717	12180674	0.001700809
3	0.15	160	0.0009375	36760	9931586	0.003701322
4	0.225	160	0.00140625	38648	7151579	0.005404121
5	0.3	160	0.001875	53975	7461543	0.007233758
6	0.375	160	0.00234375	74013	8133414	0.009099869

GC Method: 50 °C hold for 2 min, followed by a temperature increase of 20 °C / min to 300 °C, hold 3 min (total run time: 17.5 min). Retention time: TCE 4.69 min; BTBF 12.86 min.

Figure S1. The standard curve of BTBF with TCE as an internal reference.¹

2. DFT calculations ²

DFT calculation of BTBF (3a)

Atom	Х	Y		Ζ
С	4.36895612	0.14128040	0.00021046	
С	3.86527687	1.45544452	0.00003437	
С	2.49206350	1.69436855	-0.00009193	
С	1.60556944	0.60272821	-0.00002395	
С	2.13049073	-0.71911233	0.00013641	
С	3.50283266	-0.95765756	0.00025835	
С	0.17743775	0.55610888	-0.00014655	
С	-0.41776321	-0.68024402	-0.00006972	
S	0.81012717	-2.01162283	0.00014675	
Ο	-0.77354594	1.58211870	-0.00052399	
С	-2.01955807	0.92143699	-0.00012229	
С	-1.84328106	-0.48987468	-0.00013359	
С	-3.26119658	1.53883765	0.00001216	
С	-4.38096038	0.69862965	0.00010660	
С	-4.24094028	-0.70417851	0.00006707	
С	-2.98259724	-1.31015710	-0.00004763	
Н	5.44103080	-0.02509812	0.00030129	
Н	4.55511398	2.29273599	-0.00000896	
Н	2.10090338	2.70568888	-0.00023432	
Н	3.89275555	-1.96957149	0.00038224	
Н	-3.34973380	2.61825883	-0.00004977	
Н	-5.37327833	1.13650570	0.00016748	
Н	-5.13084464	-1.32475937	0.00015145	
Н	-2.88759559	-2.39040856	-0.00000407	

 Table S2. B3LYP/6-31G optimized standard orientation of BTBF (3a).

				_
Atom	Х	Y	Z	
С	1.99322160	0.56881678	-0.00006849	
С	2.42910857	-0.78470963	0.00004425	
С	3.78274872	-1.11316185	0.00010013	
С	4.71890429	-0.07334581	0.00002496	
С	4.30343902	1.27137913	-0.00007423	
С	2.94912648	1.60020930	-0.00010162	
С	0.56528890	0.61629756	-0.00004920	
С	-0.10934973	-0.57949759	-0.00001164	
Н	4.10574160	-2.14828199	0.00022768	
Н	5.77761166	-0.31011324	0.00006284	
Н	5.04702960	2.06118083	-0.00012845	
Н	2.62540621	2.63507940	-0.00014736	
С	-3.89612599	-0.33300540	-0.00016067	
С	-2.70424527	-1.04424080	-0.00026168	
С	-1.51741851	-0.29488476	-0.00015969	
С	-1.60092206	1.12597358	-0.00008532	
С	-2.80000857	1.82337208	0.00018058	
С	-3.97583993	1.06573331	0.00011014	
Н	-2.70999887	-2.12635423	-0.00038132	
Н	-2.81951464	2.90572368	0.00039655	
Н	-4.94889109	1.53967452	0.00043954	
0	-0.31472870	1.70230213	0.00005429	
S	1.02701852	-1.98851820	0.00009850	
F	-5.09104625	-1.05029448	0.00006612	

 Table S3. B3LYP/6-31G optimized standard orientation of F-BTBF (3c).

DFT calculation of F,Cl-BTBF (**3d**)

Atom	Х		Y	Ζ
С	-1.38145731	0	.05133421	-0.00002335
С	-1.59779874	-1.35411568	0.00006672	
С	-2.88388238	-1.88914131	0.00044388	
С	-3.97663227	-1.01573103	0.00037199	
С	-3.75274842	0.36734640	0.00011163	
С	-2.48310981	0.92557362	-0.00023198	
С	0.01961649	0.32636114	-0.00003111	
С	0.87360141	-0.74877902	-0.00020283	
Н	-3.04505080	-2.96107076	0.00051414	
Н	-4.98805022	-1.40188925	0.00042294	
Н	-2.33910024	1.99837396	-0.00045829	
С	4.43089944	1.48562114	0.00001967	
С	4.57348345	0.09168148	-0.00003151	
С	3.50898481	-0.79879618	-0.00007036	
С	2.21922453	-0.24558086	-0.00019265	
С	2.07684262	1.17055185	-0.00012286	
С	3.15061264	2.04874477	-0.00001571	
Н	5.31668171	2.10749251	0.00008457	
Н	3.68633371	-1.86629914	-0.00013237	
Н	2.99916032	3.12058002	0.00000575	
0	0.71536398	1.53674469	0.00019009	
S	-0.02539247	-2.31949350	-0.00030785	
F	5.86572189	-0.42778418	0.00037486	
Cl	-5.20023075	1.48119914	-0.00005616	

 Table S4. B3LYP/6-31G optimized standard orientation of F,Cl-BTBF (3d).

Atom	Х	Y	ζ	Z
С	2.02184757	0.55916418	-0.00005499	
С	2.44163328	-0.79969524	0.00001991	
С	3.79101255	-1.14488516	0.00011544	
С	4.74082116	-0.11726992	0.00016289	
С	4.34175340	1.23227607	0.00009922	
С	2.99138945	1.57784902	-0.00001288	
С	0.59453779	0.62499042	-0.00016256	
С	-0.09601541	-0.56120458	-0.00018100	
Н	4.10064275	-2.18419398	0.00016454	
Н	5.79652747	-0.36741263	0.00025312	
Н	5.09498988	2.01305992	0.00013210	
Н	2.68073711	2.61676956	-0.00007044	
С	-3.93739670	1.10803129	0.00009828	
С	-3.92398532	-0.30903059	0.00007990	
С	-2.70081874	-0.99049442	-0.00001463	
С	-1.50212657	-0.25955919	-0.00008017	
С	-1.56637256	1.15851206	-0.00004460	
С	-2.76112536	1.86266797	0.00003487	
Н	-4.89315531	1.62334729	0.00021028	
Н	-2.68266636	-2.07547909	-0.00010293	
Н	-2.77380505	2.94575503	0.00005093	
0	-0.27273033	1.72200353	-0.00012050	
С	-5.23221611	-1.07153231	0.00012946	
Н	-5.06258749	-2.15257202	0.00065843	
Н	-5.83754442	-0.82877356	0.88262296	
Н	-5.83710335	-0.82964495	-0.88290478	
S	1.02363605	-1.98473758	-0.00007406	

 Table S5. B3LYP/6-31G optimized standard orientation of M-BTBF (3e).

DFT calculation of BTNF (3j)

Atom	Х	Y		Ζ
С	-2.76976957	0.59410781	-0.00002392	
С	-3.27470436	-0.73556589	0.00012537	
С	-4.64341135	-0.99439766	0.00035385	
С	-5.52522851	0.09189557	0.00045317	
С	-5.04126658	1.41377824	0.00032510	
С	-3.67207958	1.67311378	0.00008318	
С	-1.34175178	0.57027159	-0.00030296	
С	-0.72908677	-0.65566479	-0.00037655	
Н	-5.01865602	-2.01180849	0.00046048	
Н	-6.59474399	-0.09018030	0.00063351	
Н	-5.74370605	2.24049811	0.00040556	
Н	-3.29540867	2.68989385	-0.00002320	
С	5.54882627	-0.82952447	0.00039471	
С	4.30499347	-1.42316174	0.00010562	
С	3.11181249	-0.63937574	-0.00010221	
С	3.23423757	0.80286575	0.00001190	
С	4.53781362	1.37910020	0.00031742	
С	5.66657487	0.58682093	0.00050258	
Н	1.75002898	-2.32925800	-0.00023993	
Н	6.44496354	-1.44158742	0.00053807	
Н	4.21269781	-2.50555952	0.00002105	
С	1.82775586	-1.24691826	-0.00034140	
С	2.06385009	1.61441400	-0.00017040	
Н	4.62631442	2.46172213	0.00039960	
Н	6.65147745	1.04252442	0.00073564	
С	0.85127409	0.98129327	-0.00051619	
С	0.69566639	-0.44920722	-0.00044881	
Н	2.13704082	2.69554716	-0.00012832	
0	-0.41136396	1.61820638	-0.00047977	
S	-1.93450837	-2.00628220	-0.00008169	

 Table S6. B3LYP/6-31G optimized standard orientation of BTNF (3j).

Figure S2. HOMOs and LUMOs of BTBF (3a), F-BTBF (3c), F,Cl-BTBF (3d), M-BTBF (3e) and BTNF (3j) by DFT calculations at the B3LYP/6-31G level.

Figure S3. Energy level (E_{HOMOs} and E_{LUMOs}) diagrams of BTBFs and BTNF.

3. Experimental section

General information

All reagents were purchased from commercial suppliers and used without further purification unless otherwise specified. Thin layer chromatography (TLC) was performed using TLC silica gel 60 F254 glass plates. Silica gel 60 (200-300 mesh) was used for column chromatography. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were measured on JEOL 400YH spectrometer. Chemical shifts for hydrogens are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane ($\delta = 0$), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplate), and coupling constant (Hz). Detection and analysis of compounds by gas chromatography (Shimadzu GC-2010 plus). High resolution mass spectra (HRMS) were determined on a Bruker Apex IV Fourier Transform Mass Spectrometer (EI). UV-Vis spectra were measured by Shimadzu UV-1800 ENG240V, SOFT. Fluorescence spectra were measured by Shimadzu-RF-5301pc.

Synthesis and characterization of related compounds:

2,3-Dibromobenzo[*b*]thiophene:

Benzo[*b*]thiophene (5.4 g, 40 mmol) was dissolved in 50 ml CHCl₃, and then Br₂ (4.3 ml, 84 mmol) was added to the solution under ice-water bath. After it was stirred for 18 h at room temperature, NaHCO₃ aqueous solution was added to neutralize hydrobromic acid formed in the reaction mixture. The organic layer was extracted with dichloromethane (DCM) and washed with saturated brine, and then dried with MgSO₄. The solvents were removed and the residue was recrystallized from methanol/ethanol co-solvents (v/v = 2/1), affording 2,3-dibromobenzo[*b*]thiophene (10 g, 34 mmol, 85%) as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.71 (m, 2H), 7.45-7.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.96, 137.56, 125.79, 125.65, 123.44, 121.97, 114.34, 111.83. These data are consistent with those reported in the literature ³.

2,3-Dibromo-5-chlorobenzo[b]thiophene:

2,3-Dibromo-5-chlorobenzo[*b*]thiophene was synthesized from 5-chlorobenzo[*b*]thiophene (3 g, 17.8 mmol) following the similar procedure with the synthesis of 2,3-dibromo-benzo[*b*]thiophene. After purification by recrystallization from methanol/ethanol co-solvents (v/v = 2/1), 2,3-dibromo-5-chlorobenzo[*b*]thiophene (2.7 g, 8.3 mmol, 47%) was obtained as white solid. ¹H NMR (400 MHz,

CDCl₃) δ 7.72 (d, J = 2.1, 1H), 7.61 (d, J = 8.4, 1H), 7.34 (dd, J = 8.6, 1.9, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 138.70, 137.04, 132.22, 126.27, 123.10, 123.03, 116.25, 111.02. MS (EI): [M]⁺ 326. These data are consistent with those reported in the literature ³.

2,3-Dibromo-6-octylbenzo[b]thiophene:

First step: preparation of 6-octylbenzo[b]thiophene:

6-Bromobenzo[*b*]thiophene (200 mg, 0.94 mmol) and NiCl₂(dppp) (49 mg, 0.1 mmol) was added into a 50 ml round-bottomed 2-necked flask containing 15 ml of distilled THF under N₂ atmosphere. C₈H₁₇MgBr (0.7 ml, 1.9 mmol) was added to the tube slowly. It was stirred for 24 h at room temperature. The reaction mixture was quenched by NH₄Cl solution (1 mol/L) and then extracted for three times with ethyl acetate. The organic layer was washed with saturated brine, and then dried with MgSO₄. After the solvents were removed, the residue was purified by flash column chromatography on silica gel, affording 6-octylbenzo[*b*]thiophene (185 mg, 0.75 mmol, 80%) as colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 1H), 7.68 (s, 1H), 7.35 (d, *J* = 5.5 Hz, 1H), 7.28 (d, *J* = 4.9 Hz, 1H), 7.19 (dd, *J* = 8.1, 1.5 Hz, 1H), 2.76 – 2.68 (m, 2H), 1.72 – 1.61 (m, 2H), 1.35 – 1.23 (m, 10H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.02, 139.29, 137.61, 125.43, 125.24, 123.58, 123.22, 121.70, 36.09, 31.91, 31.84, 29.49, 29.41, 29.27, 22.73, 14.09. MS (EI): [M]⁺ 246. All the data are consistent with the literature reported ³.

Second step: preparation of 2,3-dibromo-6-octylbenzo[b]thiophene:

2,3-Dibromo-6-octylbenzo[*b*]thiophene (2.0 g, 8.1 mmol) was synthesized following the similar condition as the synthesis of 2,3-dibromobenzo[*b*]thiophene except that the temperature was not above 10 °C. 2,3-Dibromo-6-octylbenzo[*b*]thiophene (2.9 g, 7.2 mmol, 89%) was obtained as light yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.2 Hz, 1H), 7.48 (s, 1H), 7.22 (dd, *J* = 8.3, 1.3 Hz, 1H), 2.69 (t, *J* = 8.0 Hz, 2H), 1.63-1.70 (m, 2H), 1.26-1.30 (m, 10H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 141.15, 139.06, 135.57, 126.69, 123.06, 121.20, 112.88, 111.54, 36.07, 32.01, 31.69, 29.60, 29.46, 29.39, 22.82, 14.28. MS (EI): [M]⁺ 404.

Synthesis of 5-(tert-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol:

First step: preparation of 2-bromo-5-(tert-butyl)phenol:

3-(Tert-butyl)phenol (3 g, 20 mmol) was dissolved in 50 ml DCM and then Br₂ (1.04 ml, 20.3 mmol) was added into the solution under ice-water bath. After it was stirred for 7 h at room temperature, NaHCO₃ aqueous solution was added to neutralize the hydrobromic acid. The organic

layer was extracted with DCM and washed with saturated brine, and then dried with MgSO₄. After the solvent was removed, 2-bromo-5-(*tert*-butyl)phenol (4.1 g, 18 mmol, 90%) was obtained as yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.5 Hz, 1H), 7.08 (dd, J = 2.3, 1.1 Hz, 1H), 6.85 (dd, J = 8.5, 2.3 Hz, 1H), 5.56 (s, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.18, 151.83, 131.42, 119.28, 113.54, 106.93, 34.73, 31.26. These data are consistent with those reported in the literature ⁴.

Second step: preparation of 5-(*tert*-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol:

2-Bromo-5-(*tert*-butyl)phenol (1.2 g, 5 mmol) and 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi-1,3,2-dioxaborolane (B₂Pin₂) (1.5 g, 6 mmol) was dissolved in 50 ml dioxane-H₂O co-solvents (v/v = 4:1) in a 100 ml two-necked round bottom flask, then KOAc (0.8 g, 7.5 mmol) was added to the solution. After the solution was bubbled with N₂ for 20 min, Pd(PPh₃)₂Cl₂ (123 mg, 0.15 mmol) was added. Then the reaction was heated to 90 °C for 12 h. After the reaction mixture was cooled to room temperature, the organic layer was separated and dried with MgSO₄. It was filtered and the filtrate was evaporated under vacuum, the residue was purified by flash chromatography to afford the 5-(*tert*-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (0.54 g, 2.2 mmol, 44%) as white solid (mp 157.6 -158.8 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 6.94–6.92 (m, 2H), 1.34 (s, 12H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.63, 158.03, 135.41, 117.09, 112.57, 84.39, 35.08, 31.14, 24.88. HRMS (ESI) calcd for C₁₆H₂₆BO₃ [M+H]⁺ 277.1975, found 277.1971.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthalenol (2j):

3-Iodo-2-naphthalenol (4 g, 14.8 mmol) and B₂Pin₂ (7.4 g, 29.6 mmol) was dissolved in 50 ml dioxane-H₂O co-solvents (v/v = 4:1) in a 100 ml two-necked round bottom flask, then KOAc (3.3 g, 29.6 mmol) was added to the solution. After the solution was bubbled with N₂ for 20 min, Pd(PPh₃)₂Cl₂ (855 mg, 0.74 mmol, 5 mol %) was added. Then the reaction mixture was heated to 90 °C for 12 h. After the reaction mixture was cooled to room temperature, the organic layer was separated and dried with MgSO₄. It was filtered and the filtrate was evaporated under vacuum, the residue was purified by flash chromatography to afford 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthalenol (2.1 g, 7.8 mmol, 53%) as light-yellow solid (mp 56.3 - 57.1 °C). ¹H NMR (400 MHz, DMSO-D₆) δ 8.33 (s, 1H), 7.25 (s, 1H), 6.97 (d, *J* = 8.2 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 6.57-6.53 (m, 1H), 6.40-6.36 (m, 1H), 6.25 (s, 1H), 0.42 (s, 12H); ¹³C NMR (101 MHz, DMSO-D₆) δ 158.87, 138.01, 136.29, 128.30, 127.47, 127.30, 125.75, 122.86, 118.18, 108.48, 83.58, 24.70. HRMS (ESI) calcd for C₁₆H₁₉BO₃ [M-H]⁻ 269.1354, found 269.1352.

General procedure for screening of reaction conditions (entries 1-20 in Table 1):

Compound **1a** (0.48 mmol), **2a** (0.4 mmol) and base (1.2 mmol) were added into 25 ml Schlenk tube. Then *tert*-butanol (5 ml, containing 5 mol % 18-crown-6 for some entries) was added under nitrogen atmosphere. After the solution was bubbled for 10 min with nitrogen, Pd(PPh₃)₄ (0.5-5 mol %) was added to the reaction system. After the reaction was stirred at 90 °C for 24 h, copper catalyst (2-5 mol %) were added to the mixture (200 mg activated 3 Å molecular sieves was added as water adsorbent for some entries), and then it was stirred for another 4 h. TCE (100 µl) was added as an internal standard for GC analysis. About 2 ml ethyl acetate and 2 ml petroleum ether were added for extraction. The GC sample was prepared by dilution of 0.1 ml the above organic layer with 2 mL ethyl acetate. GC yield was determined using standard curve with TCE as an internal standard (see Figure S1). The product has the same retention time with authentic sample which is synthesized by conventional method. ⁴

General procedure for synthesis of **3a-3f**:

Compound 1 (0.48 mmol), 2 (0.4 mmol) and $K_3PO_4 \cdot 3H_2O$ (319 mg, 1.2 mmol) were added to 25 ml Schlenk tube. *Tert*-butanol (5 ml) containing 5 mol % 18-crown-6 was added under nitrogen atmosphere. After the solution was bubbled for 10 min with nitrogen, Pd (PPh₃)₄ (2 mol %) was added to the reaction system. After the reaction was stirred at 90 °C for 24 h, 200 mg activated 3Å molecular sieves and CuTc (2 mol %) were added to the mixture, and then it was stirred for another 4 h. After the removal of the solvents under reduced pressure, the residue was purified by flash chromatography with petroleum ether as an eluent to afford target molecules.

Benzo[4,5]thieno[3,2-*b*] benzofuran (**3a**): white solid (71 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 6.9 Hz, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.50-7.32 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 158.89, 153.10, 142.10, 125.24, 125.06, 125.03, 124.48, 124.16, 123.42, 119.82, 119.71, 118.69, 112.68. These data are consistent with those reported in the literature ³.

3-Chlorobenzo[4,5]thieno[3,2-*b*]benzofuran (**3b**): white solid (52 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 2.1 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.71 (dd, J = 7.7, 1.2 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.43 – 7.29 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.98, 151.91,

140.02, 131.41, 126.19, 125.58, 125.39, 125.28, 123.84, 123.61, 120.55, 119.89, 119.55, 112.83. All the data are consistent with the literature reported ³.

8-Fluorobenzo[4,5]thieno[3,2-*b*]benzofuran (**3c**): white solid (45 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.58 (dd, *J* = 9.0, 4.1 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.45 – 7.37 (m, 2H), 7.10 (td, *J* = 9.0, 2.7 Hz, 1H); ¹³C NMR (101MHz, CDCl₃) δ 159.33 (d, *J* = 238 Hz), 154.80 (d, *J* = 31 Hz), 142.25, 125.43, 125.14, 124.98, 124.83, 124.72, 124.47, 119.95, 118.39, 113.21 (d, *J* = 10 Hz), 112.38 (d, *J* = 26 Hz), 105.64 (d, *J* = 26 Hz). All the data are consistent with the literature reported ³.

3-Chloro-8-fluorobenzo[4,5]thieno[3,2-*b*]benzofuran (**3d**): white solid (34 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 2.3 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.59 (dd, J = 9.1, 4.1 Hz, 1H), 7.42-7.36 (m, 2H), 7.13 (td, J = 9.1, 2.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.38 (d, J = 243 Hz), 155.03, 153.40, 140.13, 131.52, 125.92, 125.71, 125.37, 124.50, 124.39, 119.67, 113.43 (d, J = 10 Hz), 113.01 (d, J = 26 Hz), 105.82 (d, J = 26 Hz). All the data are consistent with the literature reported ³.

8-Methylbenzo[4,5]thieno[3,2-*b*]benzofuran (**3e**): white solid (35 mg, 36% yield), mp 111.1-112.4 °C. ¹H NMR (400MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.51-7.53 (m, 2H), 7.46 (td, *J* = 7.5, 0.9 Hz, 1H), 7.35-7.39 (m, 1H), 7.17-7.19 (m, 1H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.29, 153.22, 142.00, 133.02, 126.19, 125.32, 125.01, 124.89, 124.46, 124.10, 119.73, 119.66, 118.46, 112.13, 21.54. HRMS (EI) calcd for C₁₅H₁₀OS [M]⁺ 238.0452, found 238.0443.

8-Octylbenzo[4,5]thieno[3,2-b]benzofuran (3f): white solid (74 mg, 61% yield), mp 57.4 - 58.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.2 Hz, 1H), 7.63-7.72 (m, 3H), 7.29-7.39 (m, 3H), 2.76 (t, J = 7.5 Hz, 2H), 1.66-1.73 (m, 2H), 1.25-1.42 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.74, 153.18, 142.49, 140.44, 126.10, 124.67, 124.35, 123.81, 123.34, 123.22, 119.49, 119.47, 117.68, 112.58, 36.29, 32.02, 31.83, 29.62, 29.45, 29.39, 22.81, 14.26. HRMS (EI) calcd for C₂₂H₂₄OS [M]⁺ 336.1548, found 336.1544.

2-Octyl-7-*tert*-butylbenzo[4,5]thieno[3,2-*b*]benzofuran (**3g**):

The title compound was prepared from was prepared from 2,3-dibromo-6-octylbenzo[b]thiophene (194 mg, 0.48 mmol) and 5-(tert-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (110 mg, 0.4 mmol) as colorless liquid (63 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 1H), 7.70-7.65 (m, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.40 (dd, J = 8.2, 1.8 Hz, 1H), 7.29 (dd, J = 8.2, 1.4 Hz, 1H), 2.75 (t, J = 7.8 Hz, 2H), 1.65-1.73 (m, 2H), 1.42 (s, 9H), 1.27-1.39 (m, 10H), 0.88 (t, J = 6.9Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.19, 153.02, 148.81, 142.25, 140.10, 126.02, 123.80, 123.38, 121.71, 121.05, 119.26, 118.75, 117.58, 109.40, 36.29, 35.23, 32.02, 31.87, 31.78, 29.63, 29.47, 29.40, 22.81, 14.27. HRMS (EI) calcd for C₂₆H₃₂OS [M]⁺ 392.2174, found 392.2165.

7-(*Tert*-butyl)benzo[4,5]thieno[3,2-*b*]benzofuran (**3h**):

The title compound was prepared from 2,3-dibromobenzo[b]thiophene (140 mg, 0.48 mmol) and 5-(tert-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (110 mg, 0.4 mmol) as white solid (56 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 1.2 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.34–7.48 (m, 3H), 1.42 (s, 9H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 159.33, 152.91, 149.16, 141.85, 125.36, 124.90, 124.63, 124.38, 121.49, 121.07, 119.53, 118.89, 118.58, 109.41, 35.19, 31.70. All the data are consistent with the literature reported ³.

3-Chloro-7-*tert*-butylbenzo[4,5]thieno[3,2-*b*]benzofuran (3i):

The title compound was prepared from 2,3-dibromo-5-chlorobenzo[b]thiophene (156 mg, 0.48 mmol) and 5-(tert-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (110 mg, 0.4 mmol): white solid (41 mg, 32% yield), mp 64.6 - 65.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 2.0 Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.68-7.65 (m, 2H), 7.43 (dd, J = 8.3, 1.6 Hz, 1H), 7.33 (dd, J = 8.6, 1.9 Hz, 1H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 160.42, 158.03, 154.90, 153.27, 140.00, 131.39, 125.78, 125.58, 125.25, 119.54, 113.35, 113.26, 105.63, 105.57, 29.70, 14.07. HRMS (EI) calcd for C₁₈H₁₅ClOS [M]⁺ 314.0532, found 314.0529.

Benzo[4,5]thieno[3,2-*b*]naphthalenefuran (**3j**):

The title compound was prepared from 2,3-dibromobenzo[*b*]thiophene (140 mg, 0.48 mmol) and 3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthalenol (108 mg, 0.4 mmol) as white solid (39 mg, 35% yield), mp 244.7 - 245.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.02-8.05 (m, 2H), 7.96-8.00 (m, 2H), 7.91 (d, *J* = 8.2 Hz, 1H), 7.46-7.52 (m, 3H), 7.40-7.44 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.93, 154.02, 141.64, 130.47, 129.57, 127.13, 127.00, 124.48, 124.41, 124.15, 123.75, 123.49, 119.18, 116.99, 116.50, 107.37. HRMS (EI) calcd for C₁₈H₁₀OS [M] + 274.0452, found 274.0448.

4. Measurement of photophysical data

UV-Visible spectra of **3a**, **3c**, **3d**, **3e** and **3j** were obtained on Shimadzu UV-1800ENG240V, SOFT spectrometer. Ca. 6×10^{-5} M of sample solutions in ethanol were used for ambient temperature measurement. As shown in Figure 1, the absorption spectra of these compounds exhibit fine structures, and the maximum absorption peaks at 318, 320, 319, 319 and 355 nm.

Fluorescence spectra of **3a**, **3c**, **3d**, **3e** and **3j** were obtained on Shimadzu-RF-5301pc spectrometer with Ca. 2×10^{-7} M of sample solutions in ethanol were used for ambient temperature measurement. Using the maximum absorption wavelength as the excitation wavelength for fluorescence measurement, we found that the maximum emission peaks of these compounds are located at 339, 342, 347, 340, 378 nm, respectively.

9,10-Diphenylanthracene ($\Phi_f = 0.95$ in ethanol) is used as the reference compound for the measurement of fluorescence quantum yield. Ca. 5×10^{-6} M of sample and reference solutions in ethanol were used to make sure that the absorption intensity (A_u and A_s) is below 0.1. Through software processing, we integrate the fluorescence spectra and get the integral area labeled F_u (Fluorescence intensity of the compounds to be measured). Similarly, the fluorescence spectra of

9,10-diphenylanthracene and the integral area labeled F_s (Fluorescence intensity of reference material) were measured. \mathcal{P}_u (Fluorescence quantum yield of the compounds to be measured) can be obtained from formula $A_u \cdot \mathcal{P}_u \cdot F_s = A_s \cdot \mathcal{P}_s \cdot F_u$.

5. ¹H and ¹³C NMR spectra and HRMS spectra

¹H NMR spectrum of 2,3-dibromobenzo[*b*]thiophene

¹³C NMR spectrum of 2,3-dibromobenzo[*b*]thiophene

¹³C NMR spectrum of 2,3-dibromo-5-chlorobenzo[*b*]thiophene

¹H NMR spectrum of 2,3-dibromo-6-octylbenzo[*b*]thiophene

S20 / S39

¹³C NMR spectrum of 5-(*tert*-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol

HR-MS spectrum of 5-(*tert*-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol:

S23 / S39

HRMS spectrum of 2j

¹H NMR spectrum of **3a**

¹H NMR spectrum of **3b**

S28 / S39

HRMS spectrum of 3e

HRMS spectrum of 3f

HRMS spectrum of 3g

 $^1\mathrm{H}$ NMR spectrum of 3h

¹³C NMR spectrum of **3h**

HRMS spectrum of 3i

6. References

- (1) Mo, F. Y.; Dong, G. B., Science 2014, 345, 68-72.
- (2) (a) Lee, C.; Yang, W.; Parr, R. G., *Phy. Rev.* 1988, *37*, 785-789. (b) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G., et al., *Gaussian 09, revision A.01; Gaussian, Inc.: Wallingfor, CT, 2009.*
- (3) Chen, D. L.; Yuan, D. F.; Zhang, C.; Wu, H.; Zhang, J.; Li, B. L.; Zhu, X. Z., *J. Org. Chem.* **2017**, *82*, 10920-10927.
- (4) Zhang, H.; Ma, C.; Zheng, Z.; Sun, R.; Yu, X.; Zhao, J., *Chem. Commun. (Camb)* **2018**, *54*, 4935-4938.