A Bis-benzimidazole PMOs Ratiometric Fluorescence Sensor with Integrating of AIEE and ESIPT for Sensitive Detection of Cu²⁺

Xiafan Hao,^a Shuhua Han,^{*a} Jingtao Zhu,^b Yongfeng Hu,^c Lo Yueh Chang,^d Chih-Wen Pao,^e Jeng-Lung Chen,^e Jin-Ming Chen,^e Shu-Chih Haw^e

^a Key Lab of Colloid and Interface Chemistry Ministry of Education, Shandong University, Jinan 250100, P. R. China

^bMOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China

^c Canadian Light Source 44 Innovation Boulevard Saskatoon, SK, S7N 2V3, Canada

^d Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University

Soochow University- Western University Centre for Synchrotron Radiation Research

National Synchrotron Radiation Research Center 101 Hsin-Ann Rd.,
Science-Based Industrial Park Hsinchu 30076, Taiwan

*To whom correspondence should be addressed: Emailshuhhan@sdu.edu.cn: Tel: +86-531-88365450; Fax: +86-531-88564464.

PMOs=Periodic mesoporous organosilicas; AIEE=Aggregation-induced emission enhancement; ESIPT=excited-state intramolecular proton transfer.

Figure S1. FT-IR spectra of BBM, BBM-Si and BBM-PMO-X after extraction, X=0, 2, 5, 10, respectively. (X is the quality fraction of BBM-Si).

Supporting information

Figure S2. ²⁹Si MAS NMR spectrum of BBM-PMO-20.

Figure S3. TGA / DSC of BBM-PMO-10.

Figure S4. Fluorescence spectra of BBM (10⁻⁶ M) in different solvents (a) protic solvents (CH₃OH, CH₃CH₂OH); (b) aprotic solvents (DCM, DMF, THF).

Figure S5. The formation of zwittrion.

Figure S6. (a) Fluorescence spectra of BBM (10^{-6} M) in different THF/H₂O (v/v); (b) fluorescence intensity ratio I₂/I₁ in THF/H₂O of different water fraction (f_w).

Figure S7. (a) Fluorescence emission spectra of BBM (10⁻⁶ M) in THF:H₂O=3:7 (v/v) with different pH value; (b) fluorescence intensity ratio I_2/I_1 of BBM (10⁻⁶ M) in THF:H₂O=3:7 (v/v) in the absence and prescence of Cu²⁺ (10⁻⁵ M).

Figure S8. Time-resolved fluorescence for the BBM-Si and BBM-PMO dissolved in THF. The fluorescence signal was collected at 450 nm, the excitation wavelength at 380nm.

	BBM-Si	BBM-PMO-2	BBM-PMO-5	BBM-PMO-10
τ_1/ns	2.07(97%)	1.68(86%)	1.03(47%)	0.73(21%)
τ_2/ns	4.57(3%)	3.83(14%)	2.07(53%)	2.05(79%)
$\overline{ au}$ /ns	2.15	1.98	1.58	1.77

BMM-PMO-10+Cu²⁺⁺Metal ions BMM-PMO-10+Metal ions 0.8 - 0.8 - 0.4

Figure S9. Fluorescence intensity ratio I_2/I_1 of BBM-PMO-10 (5×10⁻⁶ g/mL) in the presence of a single metal ion (red bar) and in the mixture of Cu^{2+} and other metal ions (black bar).

Table S1. Fluorescence lifetimes of BBM-Si and BBM-PMOs

Figure S10. Fluorescence spectra of BBM in THF:H₂O=3:7 (v/v) with different concentration of Cu²⁺ (8×10^{-7} to 8×10^{-6} M); (b) linear relationship between fluorescence intensity ratio I₂/I₁ of BBM (10⁻⁶ M) and concentration of Cu²⁺ in the solvent.

Figure S11. The reproductive test of BBM-PMO-10 (5×10⁻⁶ g/mL) in THF/H₂O (3:7 v/v).

Figure S12. ¹H NMR spectrum of BBM

Figure S13. HRMS spectrum of BBM

Figure S14. ¹H NMR spectrum of BBM-Si.

Figure S15. HRMS spectrum of BBM-Si

Figure S16 (a) Fluorescence spectra of solutions containing different molar fraction of Cu^{2+} . (b) The Job's plot of I_2/I_1 with molar fraction of Cu^{2+} .