Supporting Information

Fluorescent-tunable copper nanoclusters and their application in hexavalent chromium sensing

Yu-Syuan Lin, Tai-Chia Chiu, and Cho-Chun Hu*

1 Supplementary Figures and Tables

1.1 Supplementary Figures

Figure S1. Stability of bi-ligand Cu NCs. Relative emission intensities (F/F_0) of asprepared Cu NC (F_0) and stored for 20 days (F).

Figure S2. Salt tolerance and photostability of Cu NC-2. (A) Stability of Cu NC-2 in different concentrations of NaCl ranging from 100 mM to 1000 mM. (B) Photostability of Cu NC-2.

Figure S3. The correlation between Cu NC-2 and Cr(VI). The excitation spectrum of Cu NC-2 (blue line) and absorption spectrum of 0.02 M Cr(VI) (black line).

Figure S4. Optimization for Cr(VI) sensing. (A) Fluorescence intensities changes (1- F/F_0) of Cu NC-2 after adding 1 mM Cr(VI) at different pH value. (B) Fluorescence intensity and Fluorescence intensity change (1- F/F_0) of Cu NC-2 at various excitation wavelengths.

Figure S5. Photostability of Cu NC-2 with and without Cr(VI). Fluorescence time scan of Cu NC-2 (black line) and Cu NC-2 containing 0.1 mM of Cr(VI) (red line) at pH 5. The excitation wavelength was set at 355 nm.

1.2 Supplementary Tables

Table S1. Determination of Cr(VI) in mineral water using the present method. Each concentration of Cr(VI) in mineral water was tested for three times then the R.S.D. and recoveries have been calculated.

and recoveries have been calculated.						
Mineral water	Spiked Cr(VI) [µM]	Detected [µM]	R.S.D. [%]	Recovery [%]		
1#	10	9.83	2.06	98.3		
	14	13.83	2.51	98.7		
	20	21.01	4.54	105.0		

Method	Sensor	Linear range /µM	Detection limit /µM	Ref.
Colorimetry	GNRs	0.1–20	0.088	1
Colorimetry	AA-AgNPs	0.08-1.84	0.05	2
Colorimetry	DMSA-AuNPs	0.01-0.5	0.01	3
Colorimetry	BSA-Au NPs and HBr	0.5-50	0.28	4
Fluorimetry	CdTE@SiO ₂ and RhB	0.02-0.3	0.0062	5
Fluorimetry	SRBH	0.01-0.3	0.0015	6
Fluorimetry	BHHABN	2.5-90	0.36	7
Fluorimetry	N-GQDs	0.12-140	0.04	8
Fluorimetry	Cys-Cu NCs	0.05-60	0.043	9
Fluorimetry	G-C ₃ N ₄ nanosheets	0.6-300	0.15	10
Fluorimetry	BSA-Au NCs and HBr	0.001-2.5	0.0006	11
Fluorimetry	bi-ligand Cu NC	0.1-1000	0.033	This work

Table S2. Comparison of the performance of the presented method with the some published analytical techniques for Cr(VI) detection.

2 References

(1) Li, F. M.; Liu, J. M.; Wang, X. X.; Lin, L. P.; Cai, W. L.; Lin, X.; Zeng, Y. N.; Li, Z. M.; Lin, S. Q. Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. *Sensors and Actuators B: Chemical* **2011**, *155*, 817-822.

(2) Wu, X.; Xu, Y.; Dong, Y.; Jiang, X.; Zhu, N. Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles. *Analytical Methods* **2013**, *5*, 560-565.

(3) Chen, W.; Cao, F.; Zheng, W.; Tian, Y.; Xianyu, Y.; Xu, P.; Zhang, W.;
Wang, Z.; Deng, K.; Jiang, X. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. *Nanoscale* 2015, *7*, 2042-2049.
(4) Guo, J. F..; Huo, D.-Q.; Yang, M.; Hou, C.-J.; Li, J.-J.; Fa, H.-B.; Luo, H.-B.; Yang, P. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. *Talanta* 2016, *161*, 819-825.
(5) Tao, H. L.; Xu, M. Z.; Zhang, Q. J.; Zhang X. H.; Li, S. H.; Zhong, F. X.; Sun, C.; Liao, X. F. Determination of Cr(vi) in Leersia hexandra Swartz based on the efficient fluorescence energy transfer between CdTe@SiO₂ nanoparticles and Rhodamine B. Analytical Methods 2013, *5*, 5961-5968.

(6) Zheng, A.; Chen, J.; Wu, G.; Wu, G.; Zhang, Y. G.; Wei, H. A novel fluorescent distinguished probe for Cr (VI) in aqueous solution. *Spectrochim Acta A Mol Biomol Spectrosc* **2009**, *74*, 265-270.

(7) Zhang, Z.; Sha, C.; Liu, A.; Zhang, Z.; Xu, D. Highly Selective Detection of Cr(VI) in Water Matrix by a Simple 1,8-Naphthalimide-Based Turn-On Fluorescent Sensor. *Journal of Fluorescence* **2015**, *25*, 335-340.

(8) Cai, F.; Liu, X.; Liu, S.; Liu, H.; Huang, Y. A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr(vi) in aqueous media. *RSC Advances* **2014**, *4*, 52016-52022.

(9) Cui, M.; Song, G.; Wang, C.; Song, Q. Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). *Microchimica Acta* **2015**, *182*, 1371-1377.

(10) Rong, M.; Lin, L.; Song, X.; Wang, Y.; Zhong, Y.; Yan, J.; Feng, Y.; Zeng, X.; Chen, X. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent "switch". *Biosensors and Bioelectronics* **2015**, *68*, 210-217.

(11) Guo, J. F.; Hou, C. J.; Yang, M.; Hou, D. Q.; Fa, H. B. Ultra-sensitive fluorescence determination of chromium(vi) in aqueous solution based on

selectively etching of protein-stabled gold nanoclusters. *RSC Advances* **2016**, *6*, 104693-104698.