Support Information

Ultrafine Nanoparticles of W-Doped SnO₂ for Durable H₂S Sensor with Fast Response and Recovery

Pengjian Wang^{a,b}, Junfeng Hui^b, Tingbiao Yuan^b, Peng Chen^c, Yue Su^c, Wenjie Liang^c, Fulin Chen^d, Xiaoyan Zheng^{*a,d}, Yuxin Zhao^{*e} and Shi Hu^{*b}

^a Shaanxi Key Laboratory of Degradable Biomedical Materials, Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xian, Shaanxi 710069, China

^b Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.

^c Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

^d College of Life Sciences, Northwest University, Xian, Shaanxi 710069, China.

^e State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, No. 339, Songling road, Laoshan District, Qingdao, Shandong 266071, China.

Materials Characterization

The morphology and EDX-mapping of the product were characterized by the field emission scanning electron microscopy (SEM, FEI Nova Nano 230) and high resolution emission electron microscope (FEI Tecnai G2 F20 S-Twin). The crystal phase of the product was detected by X-ray diffraction (XRD, Cu K α radiation, λ =0.15406 nm, PANalytical) at 40 KV and 40 mA. The surface information was obtained from X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250Xi). Raman spectrum was obtained from a RENISHAW inVia reflex confocal Raman microscope using a 532-nm laser.

Figure S1 XRD pattern of the prepared SnO₂ before calcination and after calcination

Figure S2 SEM images of (a) pristine SnO₂ and (b) W-doped SnO₂ WS-5

Figure S3 Raman scattering spectra of pristine SnO₂ and W-doped SnO₂ nanoparticles

Figure S4 Gas response of SnO2 and W doped SnO2 based sensor to various temperature from 160°C to 400°C

Figure S5 Response time and recovery time of the SnO_2 and W doped SnO_2 based sensors upon exposure to 10 ppm H₂S gas at an operating temperature from 160°C to 400°C.

Figure S6 Response of WS-5 sensor passivation under 10ppm H₂S at 260°C.

Figure S7 Long-term stability of WS-5 to 100 ppm $\rm H_2S$ at 260 °C.