## Quantitative Analysis of Crystallinity in an Argyrodite Sulfide-Based Solid Electrolyte Synthesized *via* a Solution

### SUPPORTING INFORMATION

So Yubuchi<sup>*a*</sup>, Hirofumi Tsukasaki<sup>*b*</sup>, Atsushi Sakuda<sup>*a*</sup>, Shigeo Mori<sup>*b*</sup>, Akitoshi Hayashi<sup>*a*\*</sup>, and

Masahiro Tatsumisago<sup>a</sup>

a. Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University,

1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

b Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University,

1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

### \*Corresponding author:

Akitoshi Hayashi (Professor)

Tel.: +81-72-2549331; Fax.: +81-72-2549334

E-mail address: hayashi@chem.osakafu-u.ac.jp

#### Mutual confirmation of the accuracy in a WPPF technique and TEM observation

The accuracy of the WPPF technique, which can be used to calculate the amount ratios of the crystals, was investigated. Amorphous Li<sub>3</sub>PS<sub>4</sub> and crystalline  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> were mixed at arbitrary ratios, and a linear relationship between the amount ratios of the  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystals calculated from the WPPF technique and the mixed ratios was confirmed. Amorphous Li<sub>3</sub>PS<sub>4</sub> and  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystals were prepared based on previous reports.<sup>1,2</sup> Figure S9 (a) shows XRD patterns of the amorphous Li<sub>3</sub>PS<sub>4</sub>,  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal, and A<sub>2</sub>O<sub>3</sub> crystal. Figure S9 (b) shows XRD patterns of the mixtures of the amorphous Li<sub>3</sub>PS<sub>4</sub>,  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal, and A<sub>2</sub>O<sub>3</sub> crystal. The mixed weight ratios of the amorphous Li<sub>3</sub>PS<sub>4</sub> and  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal were x:100–x (x = 0, 50, 80, 100). Figure S9 (c) presents the relationship between the amount ratios of the  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystals calculated from the WPPF technique and the mixed ratios. The accuracy of the WPPF technique was confirmed to be high because of their reasonable correlation. The amount ratio of the  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal was 80%. This result agrees with previous reports where the crystallinities were 75 vol.% or less when the sulfide electrolytes such as the Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> and Li<sub>3</sub>PS<sub>4</sub> glass-ceramic were heated at high temperatures.<sup>3,4</sup>

TEM observation of the  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal was also conducted. Figure S10 (a–d) shows the BF image, ED pattern, DF images, and superposed DF image, respectively. The main crystalline phase was identified as the  $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal. From the superimposed DF images, the volume ratio of the crystallized region was calculated to be 74%. The ratio calculated from the TEM observation is lower than that obtained from the WPPF technique because the volume ratios of the crystalline are provided from the two-dimensional images. However, the results are considered sufficient to ensure the validity of the WPPF technique.

### References

- F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, *Advanced Mater.*, 2005, 17(7), 918– 921.
- K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama and R. Kanno, *Solid State Ionics*, 2011, 182, 53–58.
- H. Tsukasaki, H. Mori, M. Deguchi, S. Mori, A. Hayashi and M. Tatsumisago, *Solid State Ionics*, 2017, 311, 6–13.
- 4. H. Tsukasaki, S. Mori, S. Shiotani, H. Yamamura and H. Iba, J. Power Sources, 2017, 369, 57–64.



Figure S1 Nyquist plots of the argyrodite electrolytes prepared by heating at (a) 150 °C and (b) 400 °C. The impedance measurements were conducted at low temperatures below -20 °C.



Figure S2 XRD patterns of  $Li_6PS_5Br$  precipitated from the EtOH precursor solution by drying at RT,  $Li_6PS_5Br$  precipitated from the THF and EtOH precursor solutions by drying at 80 °C and 150 °C, and  $Li_3PS_4$ ·3THF prepared by drying at RT.





Figure S3 Rietveld refinement profiles of powder XRD data for the argyrodite electrolytes heated at (a) 150 °C and (b) 400 °C. The data were recorded at room temperature. Red dots and light blue lines denote the observed and calculated XRD patterns, respectively. The green sticks mark the position of the reflections for  $\text{Li}_6\text{PS}_5\text{Br}$ , LiBr, and  $\text{Li}_2\text{S}$ . The difference between the observed and calculated patterns is indicated by the blue lines. The background is represented by the purple lines.

|          |        |         | + Al <sub>2</sub> O <sub>3</sub> | ◆ Li <sub>2</sub> S | ▼ LiBr |
|----------|--------|---------|----------------------------------|---------------------|--------|
|          | 550 °C | +<br>◆▼ | *                                | *                   | *      |
| 1111     | 500 °C | +<br>•• | *                                | *                   | *      |
| ו (מוטיר | 400 °C | +<br>•▼ | *                                | *                   | *      |
| ווכווסוו | 300 °C | +<br>•  | *                                | *                   | *      |



## Figure S4 XRD patterns of the mixtures of $Al_2O_3$ crystals and the argyrodite electrolytes.





Figure S5 Rietveld refinement profiles of powder XRD data for the mixtures of  $Al_2O_3$  crystals and the argyrodite electrolytes heated at (a) 150 °C and (b) 400 °C. The data were recorded at room temperature. Red dots and light blue lines denote the observed and calculated XRD patterns, respectively. The green sticks mark the position of the

reflections for  $Li_6PS_5Br$ , LiBr,  $Li_2S$ , and  $Al_2O_3$ . The difference between the observed and calculated patterns is indicated by the blue lines. The background is represented by the purple lines.



Figure S6 Intensity profiles of the ED patterns of the argyrodite electrolytes heated at (a) 150 °C and (b) 400 °C with XRD card data of  $Li_6PS_5Br$ .







(b)



Figure S7 DF images taken of all the diffraction spots in the ED patterns of the argyrodite electrolytes heated at (a) 150 °C and (b) 400 °C.









Figure S8 DF images of the region used to determine the amount ratios of the crystals in the argyrodite electrolytes heated at (a) 150 °C and (b) 400 °C. Bright-contrast regions are the areas including the crystallites. The black-color regions correspond to the vacuum region and the thick electrolyte regions are excluded from the calculations.



Figure S9 (a) XRD patterns of the amorphous  $Li_3PS_4$ , the  $\gamma$ - $Li_3PS_4$  crystal, and  $A_2O_3$  crystal. (b) XRD patterns of the mixtures of the amorphous  $Li_3PS_4$ , the  $\gamma$ - $Li_3PS_4$  crystals, and  $A_2O_3$  crystals. The mixed weight ratios of the amorphous  $Li_3PS_4$  and the  $\gamma$ - $Li_3PS_4$  crystals were *x*:100–*x* (*x* = 0, 50, 80, 100). (c) Relationship between the amount ratios of the  $\gamma$ - $Li_3PS_4$  crystals calculated from the WPPF technique and the mixed ratios of the  $\gamma$ - $Li_3PS_4$  crystals. The numbers in the figure represent the amount ratios of the crystal observed from the XRD and TEM measurements.



(b)



(a)



# Figure S10 (a) BF image, (b) ED pattern, (c) DF images, and (d) superposed DF images of the $\gamma$ -Li<sub>3</sub>PS<sub>4</sub> crystal taken from a TEM observation.

Table S1 Crystallographic data for Li<sub>6</sub>PS<sub>5</sub>Br prepared with heat treatment at 150 °C.

| Crystal system<br>Space group | Cubic<br>F43 <i>m</i> (no. 216) | Lattice parameter<br>Volume | a = 9.9220(3) Å<br>V = 976.7(1) Å <sup>3</sup> |          |             |              |
|-------------------------------|---------------------------------|-----------------------------|------------------------------------------------|----------|-------------|--------------|
| Atom                          | Wyckoff site                    | g                           | X                                              | y        | Z           | $U$ / Å $^2$ |
| Li                            | 48 <i>h</i>                     | 1/2                         | 0.314(2)                                       | 0.019(2) | = 1 - x(Li) | 0.0633       |

| Р          | 4b          | 1.0          | 0.0       | 0.0      | 1/2           | 0.0253 |
|------------|-------------|--------------|-----------|----------|---------------|--------|
| <b>S</b> 1 | 4 <i>a</i>  | = 1 - g(Br1) | 0.0       | 0.0      | 1.0           | 0.0253 |
| S2         | 4d          | = g(Br1)     | 1/4       | 1/4      | 3/4           | 0.0253 |
| <b>S</b> 3 | 16 <i>e</i> | 1.0          | 0.1151(2) | = -x(S3) | = 0.5 + x(S3) | 0.0253 |
| Br1        | 4 <i>a</i>  | 0.523(6)     | 0.0       | 0.0      | 1.0           | 0.0253 |
| Br2        | 4d          | = 1 - g(Br1) | 1/4       | 1/4      | 3/4           | 0.0253 |

\* $R_{\rm wp} = 3.772, R_{\rm F} = 5.724, R_{\rm B} = 6.127, S = R_{\rm wp}/R_{\rm e} = 2.3242$ 

# Table S2 Crystallographic data for Li<sub>6</sub>PS<sub>5</sub>Br prepared with heat treatment at 200 °C.

| Crystal system<br>Space group | Cubic<br>F43 <i>m</i> (no. 216) | Lattice parameter<br>Volume | a = 9.9350(9)  Å<br>$V = 980.6(1) \text{ Å}^3$ |          |               |                           |
|-------------------------------|---------------------------------|-----------------------------|------------------------------------------------|----------|---------------|---------------------------|
| Atom                          | Wyckoff site                    | g                           | X                                              | y        | <i>Z</i>      | <i>U</i> / Å <sup>2</sup> |
| Li                            | 48 <i>h</i>                     | 1/2                         | 0.294(1)                                       | 0.010(4) | = 1 - x(Li)   | 0.0633                    |
| Р                             | 4b                              | 1.0                         | 0.0                                            | 0.0      | 1/2           | 0.0253                    |
| <b>S</b> 1                    | 4 <i>a</i>                      | = 1 - g(Br1)                | 0.0                                            | 0.0      | 1.0           | 0.0253                    |
| <b>S</b> 2                    | 4 <i>d</i>                      | = g(Br1)                    | 1/4                                            | 1/4      | 3/4           | 0.0253                    |
| <b>S</b> 3                    | 16 <i>e</i>                     | 1.0                         | 0.1157(2)                                      | = -x(S3) | = 0.5 + x(S3) | 0.0253                    |
| Br1                           | 4 <i>a</i>                      | 0.667(6)                    | 0.0                                            | 0.0      | 1.0           | 0.0253                    |
| Br2                           | 4 <i>d</i>                      | = 1 - g(Br1)                | 1/4                                            | 1/4      | 3/4           | 0.0253                    |

 $*R_{wp} = 3.688, R_F = 3.900, R_B = 6.9897, S = R_{wp}/R_e = 2.2444$ 

Table S3 Crystallographic data for Li<sub>6</sub>PS<sub>5</sub>Br prepared with heat treatment at 300 °C.

| Crystal system<br>Space group | Cubic<br>F43 <i>m</i> (no. 216) | Lattice parameter<br>Volume | a = 9.9590(6) Å<br>V = 987.7(1) Å <sup>3</sup> |          |             |              |
|-------------------------------|---------------------------------|-----------------------------|------------------------------------------------|----------|-------------|--------------|
| Atom                          | Wyckoff site                    | g                           | X                                              | y        | Ζ.          | $U$ / Å $^2$ |
| Li                            | 48 <i>h</i>                     | 1/2                         | 0.292(1)                                       | 0.020(2) | = 1 - x(Li) | 0.0633       |

| Br2        | 4 <i>d</i>  | = 1 - g(Br1) | 1/4       | 1/4      | 3/4           | 0.0253 |
|------------|-------------|--------------|-----------|----------|---------------|--------|
| Br1        | 4 <i>a</i>  | 0.726(3)     | 0.0       | 0.0      | 1.0           | 0.0253 |
| <b>S</b> 3 | 16 <i>e</i> | 1.0          | 0.1178(1) | = -x(S3) | = 0.5 + x(S3) | 0.0253 |
| S2         | 4 <i>d</i>  | =g(Br1)      | 1/4       | 1/4      | 3/4           | 0.0253 |
| <b>S</b> 1 | 4 <i>a</i>  | = 1 - g(Br1) | 0.0       | 0.0      | 1.0           | 0.0253 |
| Р          | 4b          | 1.0          | 0.0       | 0.0      | 1/2           | 0.0253 |

 $*R_{wp} = 3.373, R_F = 0.884, R_B = 2.262, S = R_{wp}/R_e = 2.0523$ 

# Table S4 Crystallographic data for Li<sub>6</sub>PS<sub>5</sub>Br prepared with heat treatment at 400 °C.

| Crystal system<br>Space group | Cubic<br>F43 <i>m</i> (no. 216) | Lattice parameter<br>Volume | a = 9.9762(2)  Å<br>$V = 994.89(4) \text{ Å}^3$ |          |               |                           |
|-------------------------------|---------------------------------|-----------------------------|-------------------------------------------------|----------|---------------|---------------------------|
| Atom                          | Wyckoff site                    | <i>g</i>                    | X                                               | y        | $\mathcal{I}$ | <i>U</i> / Å <sup>2</sup> |
| Li                            | 48 <i>h</i>                     | 1/2                         | 0.3062(9)                                       | 0.013(1) | = 1 - x(Li)   | 0.0633                    |
| Р                             | 4b                              | 1.0                         | 0.0                                             | 0.0      | 1/2           | 0.0253                    |
| <b>S</b> 1                    | 4 <i>a</i>                      | = 1 - g(Br1)                | 0.0                                             | 0.0      | 1.0           | 0.0253                    |
| S2                            | 4 <i>d</i>                      | = g(Br1)                    | 1/4                                             | 1/4      | 3/4           | 0.0253                    |
| <b>S</b> 3                    | 16 <i>e</i>                     | 1.0                         | 0.1184(1)                                       | = -x(S3) | = 0.5 + x(S3) | 0.0253                    |
| Br1                           | 4 <i>a</i>                      | 0.712(2)                    | 0.0                                             | 0.0      | 1.0           | 0.0253                    |
| Br2                           | 4 <i>d</i>                      | = 1 - g(Br1)                | 1/4                                             | 1/4      | 3/4           | 0.0253                    |

 $*R_{wp} = 3.657, R_F = 1.026, R_B = 1.751, S = R_{wp}/R_e = 2.2491$ 

# Table S5 Crystallographic data for Li<sub>6</sub>PS<sub>5</sub>Br prepared with heat treatment at 500 °C.

| Crystal system<br>Space group | Cubic<br>F43 <i>m</i> (no. 216) | Lattice parameter<br>Volume | a = 9.9777(1)  Å<br>$V = 993.33(3) \text{ Å}^3$ |          |             |                    |
|-------------------------------|---------------------------------|-----------------------------|-------------------------------------------------|----------|-------------|--------------------|
| Atom                          | Wyckoff site                    | 8                           | X                                               | у        | Ζ.          | U / Å <sup>2</sup> |
| Li                            | 48h                             | 1/2                         | 0.3001(9)                                       | 0.000(2) | = 1 - x(Li) | 0.0633             |

| Р          | 4b          | 1.0          | 0.0       | 0.0      | 1/2           | 0.0253 |
|------------|-------------|--------------|-----------|----------|---------------|--------|
| S1         | 4 <i>a</i>  | = 1 - g(Br1) | 0.0       | 0.0      | 1.0           | 0.0253 |
| S2         | 4d          | = g(Br1)     | 1/4       | 1/4      | 3/4           | 0.0253 |
| <b>S</b> 3 | 16 <i>e</i> | 1.0          | 0.1175(1) | = -x(S3) | = 0.5 + x(S3) | 0.0253 |
| Br1        | 4 <i>a</i>  | 0.787(3)     | 0.0       | 0.0      | 1.0           | 0.0253 |
| Br2        | 4d          | = 1 - g(Br1) | 1/4       | 1/4      | 3/4           | 0.0253 |

 $*R_{wp} = 4.100, R_F = 2.718, R_B = 4.589, S = R_{wp}/R_e = 2.4451$ 

# Table S6 Crystallographic data for Li<sub>6</sub>PS<sub>5</sub>Br prepared with heat treatment at 550 °C.

| Crystal system<br>Space group | Cubic<br>F43 <i>m</i> (no. 216) | Lattice parameter<br>Volume | a = 9.9674(1)  Å<br>$V = 990.26(2) \text{ Å}^3$ |          |               |                           |
|-------------------------------|---------------------------------|-----------------------------|-------------------------------------------------|----------|---------------|---------------------------|
| Atom                          | Wyckoff site                    | <i>g</i>                    | X                                               | y        | $\mathcal{I}$ | <i>U</i> / Å <sup>2</sup> |
| Li                            | 48 <i>h</i>                     | 1/2                         | 0.3012(9)                                       | 0.008(1) | = 1 - x(Li)   | 0.0633                    |
| Р                             | 4 <i>b</i>                      | 1.0                         | 0.0                                             | 0.0      | 1/2           | 0.0253                    |
| <b>S</b> 1                    | 4 <i>a</i>                      | = 1 - g(Br1)                | 0.0                                             | 0.0      | 1.0           | 0.0253                    |
| <b>S</b> 2                    | 4 <i>d</i>                      | = g(Br1)                    | 1/4                                             | 1/4      | 3/4           | 0.0253                    |
| <b>S</b> 3                    | 16 <i>e</i>                     | 1.0                         | 0.1174(1)                                       | = -x(S3) | = 0.5 + x(S3) | 0.0253                    |
| Br1                           | 4 <i>a</i>                      | 0.698(2)                    | 0.0                                             | 0.0      | 1.0           | 0.0253                    |
| Br2                           | 4 <i>d</i>                      | = 1 - g(Br1)                | 1/4                                             | 1/4      | 3/4           | 0.0253                    |

 $*R_{wp} = 3.979, R_F = 3.255, R_B = 4.946, S = R_{wp}/R_e = 2.4549$