Electronic Supplementary Information (ESI)

Synthesis of New Polyesters by Acyclic Diene Metathesis Polymerization of Bio-Based α,ω-Dienes Prepared from Eugenol and Castor Oil (Undecenoate)

Duy Le,^a Chanatip Samart,^{a,b} Suwadee Kongparakul^{*,a,b} and Kotohiro Nomura^{*,c}

^aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand, ^bBioenergy and Biochemical Refinery Technology Program, Faculty of Science and Technology, Thammasat University 12120, Thailand, ^cDepartment of Chemistry, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

*Corresponding Author: K. Nomura. tel.: +81-743-72-6041, fax: +81-743-72-6049, e-mail: ktnomura@tmu.ac.jp; S. Kongparakul. tel.: +66-2-564-4440 ext 2418, fax: +66-2-564-4483, e-mail: ksuwadee@tu.ac.th

Table of Contents

(i)	Selected ¹ H and ¹³ C NMR spectra for monomers, crosslinker and polymers synthesized
	by ADMET polymerization techniqueS-2
(ii)	Atmospheric pressure chemical ionization (APCI) mass spectra for monomers and
	crosslinkerS-16
(iii)	Selected GPC traces and DSC thermograms of polymersS-18

(i) ¹H and ¹³C NMR spectra for monomers, crosslinker and polymers synthesized by ADMET polymerization

4-Allyl-2-methoxyphenyl 10-undecenoate (M1)

¹H NMR (CDCl₃): δ 1.33 (s, 10H, 5CH₂) 1.75-1.79 (quint, J=7.5 Hz, 2H, CH₂), 2.03-2.07 (quart, J=7.5 Hz, 2H, CH₂CH=CH₂), 2.55-2.58 (t, J=7.5 Hz, 2H, -CH₂COO-), 3.37-3.38 (d, J=6.8 Hz, 2H, Ar-CH₂), 3.81 (s, 3H, OCH₃), 4.92-5.02 (m, 2H, Ar-CH₂CH=CH₂), 5.08-5.13 (2H, -CH=CH₂), 5.78-5.86 (m, J=6.68, 6.68 and 6.77 Hz, 1H, -CH=CH₂), 5.92-6.0 (m, J=6.75, 6.75 and 6.79 Hz, 1H, Ar-CH₂CH=CH₂), 6.75-6.79 (m, 1HAr, CH), 6.93-6.94 ppm (m, 2HAr, 2CH). ¹³C NMR (CDCl₃): δ 25.1 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 33.9 (CH₂COO-), 34.1 (CH₂), 40.2 (Ar-CH₂), 55.9 (OCH₃), 112.8 (CH), 114.3 (CH=CH₂), 116.2 (Ar-CH₂CH=CH₂), 120.7 (CH), 122.6 CH), 137.2 (Ar-CH₂CH=CH₂), 138.2 (C), 138.9 (C), 139.3 (CH=CH₂), 151.0 (C), 172.1 ppm (-COO-).

Figure S1. ¹H NMR spectrum of 4-allyl-2-methoxyphenyl 10-undecenoate (M1)

Figure S2. ¹³C NMR spectrum of 4-allyl-2-methoxyphenyl 10-undecenoate (M1)

5-Hexen-1-yl 10-undecenoate (M2)

¹H NMR (500 MHz, CDCl₃, ppm): δ 1.28-1.36 (s, 10H, 5CH₂), 1.44 (m, 2H, CH₂), 1.61-1.64 (m, 4H, 2CH₂), 2.02-2.08 (m, *J*=15.2 and 16.9 Hz, 4H, 2CH₂CH=CH₂), 2.26-2.29 (t, *J*=7.4 Hz, 2H, -CH₂COO-), 4.06 (t, *J*=6.5 Hz, 2H, -COOCH₂-), 4.91-5.02 (m, *J*=8.8 and 14.0 Hz, 4H, 2CH₂=CH-), 5.77-5.80 ppm (m, *J*=1.4 and 11.6 Hz, 2H, 2CH₂=CH-). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 25.1 (CH₂), 25.3 (CH₂), 28.2 (CH₂), 29.0 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 33.4 (CH₂), 33.9 (CH₂), 34.5 (CH₂), 64.2 (-COOCH₂-), 114.3 (CH=CH₂), 139.3 (CH=CH₂), 174.1 ppm (-COO-).

Figure S3. ¹H NMR spectrum of 5-hexen-1-yl 10-undecenoate (M2)

Figure S4. ¹³C NMR spectrum of 5-hexen-1-yl 10-undecenoate (M2)

10-Undecen-1-yl 10-undecenoate (M3)

¹H NMR (500 MHz, CDCl₃, ppm): δ 1.27-1.36 (s, 22H, 11CH₂), 1.60 (s, 4H, 2CH₂), 2.02-2.03 (d, *J*=6.4 Hz, 4H, 2CH₂CH=CH₂), 2.26-2.29 (t, *J*=7.4 Hz, 2H, -CH₂COO-), 4.03-4.05 (t, *J*=6.6 Hz, 2H, -COOCH₂-), 4.90-4.99 (m, *J*=9.3 and 17.1 Hz, 4H, 2CH₂=CH-), 5.76-5.81 ppm (d, *J*=6.8 Hz, 2H, 2CH₂=CH-). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 26.0 (CH₂), 28.8 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 29.6 (CH₂), 33.9 (CH₂), 34.5 (CH₂), 64.5 (-COOCH₂-), 114.2 (CH=CH₂), 139.2 (CH=CH₂), 174.0 ppm (-COO-).

Figure S5. ¹H NMR spectrum of 10-undecen-1-yl 10-undecenoate (M3)

Figure S6. ¹³C NMR spectrum of 10-undecen-1-yl 10-undecenoate (M3)

5-Formylbenzene-1,2,3-triyl tris(undec-10-enoate) (CL)

¹¹H NMR (500 MHz, CDCl₃, ppm): δ 1.32-1.40 (s, 30H, 15CH₂) 1.70-1.76 (quint, *J*=7.5 Hz, 6H, 3CH₂), 2.02-2.06 (quart, *J*=7.0 Hz, 6H, 3CH₂CH=CH₂), 2.53-2.56 (t, *J*=7.5 Hz, 6H, 3CH₂COO-), 4.92-5.01 (m, *J*=10.2 and 17.1 Hz, 6H, 3CH=CH₂), 5.77-5.85 (m, *J*=16.7, 16.8 and 17.0 Hz, 3H, 3CH=CH₂), 7.64 (s, 2HAr, 2CH), 9.92 ppm (s, 1H, -COH). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 24.9 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 33.8 (CH₂), 114.3 (CH=CH₂), 121.7 (CH), 134.0 (*Ar*), 139.2 (CH=CH₂), 139.9 (*Ar*), 144.5 (*Ar*), 170.5 (-COO-), 189.5 ppm (-CHO).

Figure S7. ¹H NMR spectrum of 5-formylbenzene-1,2,3-triyl tris(undec-10-enoate) (CL)

Figure S8. ¹³C NMR spectrum of 5-formylbenzene-1,2,3-triyl tris(undec-10-enoate) (CL)

Polymer (P1)

P1 (sample run 8). ¹H NMR (500 MHz, CDCl₃, ppm): δ 1.33 (CH₂) 1.75-1.79 (CH₂), 2.03-2.07 (CH₂CH=CH-), 2.55-2.58 (-CH₂COO-), 3.37-3.38 (Ar-CH₂), 3.81 (OCH₃), 5.39-5.67 (-CH=CH-), 6.15-6.44 (Ar-CH₂CH=CH-), 6.75-6.79 (CH), 6.93-6.94 ppm (CH). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 25.1 (CH₂), 26.8 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 32.6 (CH₂), 33.9 (CH₂), 34.1 (CH₂), 39.1 (CH₂), 55.9 (OCH₃), 112.8 (CH), 120.7 (CH), 122.6 (CH), 128.6 (Ar-CH₂CH=CH-), 132.5 (Ar-CH₂CH=CH-), 138.2 (C), 138.9 (-CO-), 151.0 (C), 172.1 ppm (-COO-).

Figure S9. ¹H NMR spectrum (in CDCl₃ at 25 °C) for (a) monomer (M1) and (b) polymer (P1)

Figure S10. ¹³C NMR spectrum (in CDCl₃ at 25 °C) for (a) monomer (M1) and (b) polymer (P1)

Polymer PL1

PL1 (sample run 24). ¹H NMR (500 MHz, CDCl₃, ppm): δ 1.32 (CH₂) 1.75 (CH₂), 1.97-2.03 (CH₂CH=CH-), 2.56 (COOCH₂-), 3.31-3.35 (Ar-CH₂-), 3.80 (OCH₃), 5.36- 5.68 (-CH=CH-), 6.18-6.44 (Ar-CH₂CH=CH-), 6.77 (CH), 6.92 (CH), 7.64 (CH), 9.92 ppm (-COH). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 25.2 (CH₂), 26.8 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 32.6 (CH₂), 33.9 (CH₂), 34.1 (CH₂), 39.1 (CH₂), 55.9 (OCH₃), 112.8 (CH), 120.7 (CH), 122.6 (CH), 128.6 (Ar-CH₂CH=CH-), 132.5 (Ar-CH₂CH=CH-), 138.2 (C), 138.9 (C), 144.5 (C), 151.2 (C), 170.5 (-COO-crosslinker), 172.2 (-COO-), 189.5 ppm (-COH).

Figure S11. ¹H NMR spectrum (in CDCl₃ at 25 °C) for (a) crosslinker (CL), (b) the resultant polymer (**P1**) prepared by ADMET polymerization of **M1** (run 8), and (c) resultant polymer (**PL1**) prepared by the polymerization of **M1** in the presence of **CL** (5.0 mol%, sample run 24)

Figure S12. ¹³C NMR spectrum (in CDCl₃ at 25 °C) for (a) crosslinker (**CL**), (b) the resultant polymer (**P1**) prepared by ADMET polymerization of **M1** (run 8), and (c) resultant polymer (**PL1**) prepared by the polymerization of **M1** in the presence of **CL** (5.0 mol%, sample run 24)

Polymer (P2)

P2 (sample run 14). ¹H NMR (500 MHz, CDCl₃, ppm): δ 1.27-1.28 (CH₂), 1.38-1.41 (CH₂), 1.60-1.63 (CH₂), 1.95-2.04 (CH₂CH=CH-), 2.26-2.29 (-CH₂COO-), 4.06 (-COOCH₂-), 5.33-5.42 ppm (-CH=CH-). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 25.2 (CH₂), 25.9 (CH₂), 28.3 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 32.3 (CH₂), 32.7 (CH₂), 32.8 (CH₂), 34.5 (CH₂), 64.3 (-COOCH₂-), 130.4 (-CH=CH-), 174.1 ppm (-COO-).

Figure S13. ¹H NMR spectrum (in CDCl₃ in 25 °C) for (a) monomer (M2) and (b) polymer (P2)

Figure S14. ¹³C NMR spectrum (in CDCl₃ in 25 °C) for (a) monomer (M2) and (b) polymer (P2)

Polymer P3

P3 (sample run 19). ¹H NMR (500 MHz, CDCl₃, ppm): δ 1.29 (CH₂), 1.61 (CH₂), 1.96 (CH₂-CH=CH), 2.28 (-CH₂COO-), 4.05 (-COOCH₂-), 5.38 ppm (-CH=CH-). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 25.2 (CH₂), 26.1 (CH₂), 28.8 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 29.6 (CH₂), 29.7 (CH₂), 29.8 (CH₂), 29.9 (CH₂), 32.7 (CH₂), 34.5 (CH₂), 64.5 (-COOCH₂-), 130.5 (-CH=CH-), 174.1 ppm (-COO-).

Figure S15. ¹H NMR spectrum (in CDCl₃ in 25 °C) for (a) monomer (M3) and (b) polymer (P3)

Figure S16. ¹³C NMR spectrum (in CDCl₃ in 25 °C) for (a) monomer (M3) and (b) polymer (P3)

(ii) Atmospheric pressure chemical ionization (APCI) mass spectra of monomers and crosslinker

Figure S17. APCI mass spectrum of 4-allyl-2-methoxyphenyl 10-undecenoate (M1)

Figure S18. APCI mass spectrum of 5-hexen-1-yl 10-undecenoate (M2)

Figure S19. APCI mass spectrum of 10-undecen-1-yl 10-undecenoate (M3)

Figure S20. APCI mass spectrum of 5-formylbenzene-1,2,3-triyl tris(undec-10-enoate) (CL)

(iii) Selected GPC traces and DSC thermograms of polymers

Figure S21. GPC traces of polymers P2 in ADMET polymerization under effect of different G2 loading

Figure S22. GPC traces of polymers P3 in ADMET polymerization under effect of different G2 loading

Figure S23. DSC thermograms (exo down) for (a) polymers **P1** (sample run 8), **PL1** (sample run 24) and (b) polymers **P2** (sample run 14), **P3** (sample run 19), second heating cycle at a heating/cooling rate of 10 °C min⁻¹