Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte

Yuan Huang, Jiuwei Liu, Jiyan Zhang, Shunyu Jin, Yixiang Jiang, Guoqing Du,

Shengdong Zhang, Zigang Li, Chunyi Zhi, Guoqing Du, Hang Zhou

Fig. S1 (a) SEM image of rice paper. (b) The cross-sectional SEM image of rice paper.

Fig. S2 (a) Schematic illustration for the structure of solid-state $Zn-MnO_2$ battery. (b) SEM image of the MnO_2 nanosheets. (c) TEM image of the MnO_2 nanosheets. (d)

SEM images of electroplated Zn on carbon cloth.

Fig. S3 XRD spectrum of MnO₂.

Fig. S4 XRD spectrum of electroplated Zn on carbon cloth.

Fig. S5 (a) Specific capacities of solid-state ZIBs with MnO_2 conventional electrode and MnO_2/rGO electrode at various current density. (d) Nyquist plots of the samples after charging to ~1.9 V vs. Zn2+/Zn.

As shown in Fig. S5a, solid-state ZIBs with MnO₂/rGO electrode can deliver discharging capacity of ~291.5 mAh g⁻¹ at 0.15 A g⁻¹. When the rate is increased to 6.0 A g⁻¹, the cell achieves a discharge capability of 120.0 mA h g⁻¹. As a comparison, solid-state ZIBs with conventional MnO₂ electrode exhibit much lower discharge capacity, that is, ~262.9 mA h g⁻¹ at 0.15 A g⁻¹, and further drops to ~54.7 mA h g⁻¹ at 6.0 A g⁻¹. The electrochemical impedance spectroscopy (EIS) measurements were also carried out on the cell with MnO₂/rGO electrode and conventional MnO₂ electrode. The corresponding Nyquist plots (dot) and fitting results (line) are shown in Fig. S5b. The charge-transfer resistance of MnO₂/rGO sample is 1.3 Ω , which is lower than that of conventional MnO₂ sample (3.7 Ω). On the basis of the results above, the incorporation of rGO in MnO₂-based electrodes improves rate performance of the cells. This enhancement ascribed to the formation of conductive pathways for electron transport during the charging/discharging process, as evidenced in decreased charge transfer resistance.

Fig. S6 SEM images of (a) fresh zinc foil, zinc foil after 100 cycles (at 6 A g⁻¹) in (b) aqueous electrolyte and (c) KCR electrolyte.

Fig. S7 AC impedance spectra of the solid-state ZIBs with KCR electrolyte under normal and bending conditions.

Ionia conductivity	Zina salta	Deference
Tome conductivity	Zine saits	Kelelelice
$(mS cm^{-1})$		
33.2	ZnSO ₄	This work
14.6	ZnSO ₄	J. Mater. Chem. A,
		2018, 6, 12237
17.6	ZnSO ₄	Energy Environ. Sci.,
		2018, 11, 941
5.68	ZnSO ₄	-
1.73	Zn(CF ₃ SO ₃) ₂	J. Membrane Sci.,
		2014, 469, 499
0.5~0.8	ZnCl ₂	Solid State Ion.,
		2005, 176, 1797
2~4	ZnCl ₂	J. Electrochem.Soc.,
		2007, 154, A554
	Ionic conductivity (mS cm ⁻¹) 33.2 14.6 17.6 5.68 1.73 0.5~0.8 2~4	Ionic conductivity (mS cm ⁻¹)Zinc salts 33.2 ZnSO4 14.6 ZnSO4 17.6 ZnSO4 5.68 ZnSO4 1.73 Zn(CF3SO3)2 $0.5\sim0.8$ ZnCl2 $2\sim4$ ZnCl2

Table S1. Comparison of KCR electrolyte with some zinc-salt-polymer-electrolytes

 in terms of ionic conductivity in the literatures.

Poly-ε-caprolactone Express	0.88	Zn(CF ₃ SO ₃) ₂	Polym. Lett.,
			2013,7,495
Poly(4-vinylpyridine)	2×10 ⁻⁵	Zn(ClO ₄) ₂	Macromolecules,
			2004, 37, 192
PAN	0.22	ZnSO ₄	J. New Mat. Electr.
			Sys., 2001, 4, 135
PAN	0.78	ZnCl ₂	J. New Mat. Electr.
			Sys., 2001, 4, 135
poly(vinylidene fluoride	3.82	ZnTf ₂	Electrochim. Acta,
-co-hexafluoropropylene)			2015,176, 1447
poly(vinylidenefluoride)	3.94	zinc triflate	Solid State Ion.,
			2003,160,289

Table S2. Comparison of the rate performance of ZIBs $(Zn-MnO_2)$ with KCR electrolyte and other solid-state electrolyte in the literature.

Solid-state Electrolyte	Rate	Ref
Kappa-Carrageenan/rice paper	120 mAh g ⁻¹ at 6.0 A	This work
electrolyte +ZnSO ₄ /MnSO ₄	g ⁻¹	
	206 mAh g ⁻¹ at 1.5 A	
	g ⁻¹	
EG based waterborne anionic	162 mAh g ⁻¹ at 1.6 A	Energy Environ. Sci.
polyurethane	g ⁻¹	2019 , <i>12</i> , 706
acrylates/polyacrylamide		
+ZnSO ₄ /MnSO ₄		
polyacrylamide+gelatin+	150 mAh g ⁻¹ at 1.848	Energy Environ. Sci.
ZnSO ₄ /MnSO ₄	A g ⁻¹	2018 , <i>11</i> , 941
xanthan gum+ ZnSO ₄ /MnSO ₄	120-150 mAh g ⁻¹ at	J. Mater. Chem. A 2018,
	3.08 A g ⁻¹	6, 12237
poly(vinyl	201 mAh g ⁻¹ at 6.0 A	J. Mater. Chem. A
alcohol)/LiCl+ZnCl ₂ /MnSO ₄	g ⁻¹	2017 , <i>5</i> , 14838

poly(vinyl	76 mAh g ⁻¹ at 5.58 A	Adv. Mater. 2017, 29,
alcohol)/LiCl+ZnCl2/MnSO4	g ⁻¹	1700274
1-Buthyl-3-methylimidazolium	78 mAh g ⁻¹ at 2 A g ⁻¹	Electrochem. Commun.
$trifluoromethanesulfonate + ZnTf_2 \\$		201 5, <i>60</i> ,190
poly(vinylidenefluoride)+zinc	37 mAh g ⁻¹ at 200 μA	Solid State Ion. 2003,
triflate	cm^{-2} (66 mA g ⁻¹)	160, 289
poly(vinyl alcohol)+ZnTFS	45 mAh g^{-1} at 2 A g^{-1}	ACS Appl. Mater.
		Interfaces 2018 , 10,
		24573
1-Ethyl-3-methylimidazolium	125 mAh g ⁻¹ at 1 mA	Electrochim. Acta 2015,
bis(trifluoromethylsulfonyl)	cm ⁻²	176, 1447
imide+ ZnTf ₂		

Table S3. Comparison of the rate performance of ZIBs (Zn-MnO₂) with KCR electrolyte and other solid-state electrolyte in the literature.

Electrochemical	Energy density and Power density	Ref
energy storage		
devices		
Kappa-	400 W h kg ⁻¹ / 0.2 kW kg ⁻¹	This work
Carrageenan/rice	171 W h kg ⁻¹ / 7.9 kW kg ⁻¹	
paper electrolyte		
+ZnSO ₄ /MnSO ₄		
solid state ZIB	364 Wh kg ⁻¹ at 1C	J. Mater. Chem. A
(ZnSO ₄ /MnSO ₄ -	2.5 KW kg ⁻¹ at 10C	2018 , <i>6</i> , 12237
xanthan gum)		
solid state ZIB	504.9 W h kg ⁻¹ / 0.67 kW kg ⁻¹	Adv. Mater. 2017,
(LiCl-ZnCl ₂ /MnSO ₄ -	117 W h kg ⁻¹ / 8.6 kW kg ⁻¹	29, 1700274
PVA)		
solid state ZIB	360 W h kg ⁻¹ / 0.1 kW kg ⁻¹	ACS Appl. Mater.
(LiCl-ZnCl ₂ -PVA)		Interfaces 2018,
		10, 24573