Theoretical Study on the Electronic Structure and Second-Order Nonlinear

Optical Properties of Benzannulated or Selenophene-annulated Expanded

Li-jing Gong, *,a,‡ Chun-yu Liu,^{b,}‡ Cheng Ma,^a Wan-feng Lin,^a Jin-kai Lv,^a and Xiang-yu Zhang^a ^aAviation University of Air Force, Changchun 130022, China

^bInstitute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China

Contents

In	dex Page
1.	The selected bond lengths for helicene H1 between experiment and calculation S2
2.	Contour plots of the HOMO and LUMO for the studied helicenes H2-H4, H6-H9, H11, H16-H18 and H20-H23, and H25S4
3.	The computed main energy absorption band using the different basis sets level for helicene H1S4
4.	The computed main energy absorption band using the different functionals for helicene H1S4
5.	Electron density difference maps of helicenes H2-H9, H11-H14, H16-H23 and H25-H28
6.	The calculated $\beta_{\rm HRS}$ values (×10 ⁻³⁰ esu) of helicenes H1-H28 by using four DFT functionalsS6

 Table S1. The selected bond lengths for helicene H1 between experiment and calculation.

Optimized geometry of helicene H1 (not show hydrogens)

Bond	B3LYP	Experiment	Difference	
1	1.399	1.405	0.006	
2	1.384	1.390	-0.006	
3	1.411	1.425	-0.014	
4	1.420	1.417	0.003	
5	1.469	1.487	-0.018	
6	1.427	1.420	0.007	
7	1.468	1.463	0.005	
8	1.397	1.396	0.001	
9	1.400	1.397	0.003	
10	1.429	1.426	0.003	
11	1.398	1.396	0.002	
12	1.400	1.378	0.002	
13	1.434	1.434	0.000	
14	1.365	1.365	0.000	
15	1.439	1.424	0.015	
16	1.425	1.408	0.017	
17	1.462	1.456	0.006	

18	1.398	1.405	-0.007
19	1.396	1.385	0.011
20	1.427	1.431	-0.004
21	1.399	1.379	0.020
22	1.400	1.410	-0.010
23	1.471	1.476	-0.005
24	1.419	1.416	0.003
25	1.473	1.472	0.001
26	1.440	1.442	-0.002
27	1.473	1.471	0.002
28	1.390	1.389	0.001
29	1.408	1.422	0.014
30	1.431	1.416	0.015
31	1.408	1.402	0.006
32	1.391	1.378	0.013
33	1.423	1.419	0.004
34	1.374	1.363	0.011
35	1.420	1.404	0.016
36	1.374	1.374	0.000
37	1.423	1.430	-0.007
38	1.392	1.384	0.008
39	1.360	1.393	-0.033
40	1.410	1.419	-0.009
41	1.385	1.396	-0.011
42	1.399	1.404	-0.005
43	1.385	1.398	-0.013
44	1.410	1.414	-0.004

Note: the difference is equal to calculation value minus experimental value

Fig. S1. Contour plots of the HOMO and LUMO for the studied helicenes H2-H4, H6-H9, H11, H16-H18 and H20-H23, and H25.

Table S2. The computed main energy absorption band (λ , nm) using the B3LYP functional at the different basis sets level for helicene **H1**.

Basis set	6-31G(d)	6-31G(d,p)	6-31+G(d)	6-311+G(d)
λ	311.90	312.22	318.21	319.91

Table S3. The computed main energy absorption band (λ , nm) using the different functionals at 6-31+G(d) basis set level for helicene

H1.

λ 318.21 301.10 300.13 298.83	Functional	B3LYP	M06-2X	CAM-B3LYP	BH&HLYP
	λ	318.21	301.10	300.13	298.83

Fig. S2. Electron density difference maps of helicenes **H2-H9**, **H11-H14**, **H16-H23** and **H25-H28**. Blue and purple colours indicate depletion and accumulation of electron density, respectively.

Table S4. The calculated β_{HRS} values (×10⁻³⁰ esu) of helicenes **H1-H14** by using four DFT functionals associated with the 6-31+G(d) basis set and the calculated β_{HRS} values (×10⁻³⁰ esu) of the helicenes **H15-H28** by using four DFT functionals associated with the 6-31+G(d) for O, N, C and H atoms and LANL2DZ basis set for Se atom.

Compound	B3LYP	CAM-B3LYP	M06-2X	BH&HLYP
H1	7.67	5.26	5.52	4.97
H2	17.61	10.57	11.26	10.36
Н3	7.87	4.86	5.18	4.80
H4	6.55	5.02	5.28	4.83
H5	14.99	9.41	10.07	9.93
H6	7.03	5.59	6.06	5.48
H7	15.93	8.39	7.77	9.12
H8	22.67	11.04	10.31	10.71
Н9	16.08	9.70	10.19	9.64
H10	62.78	28.88	28.66	31.46
H11	24.64	14.11	14.34	14.47
H12	16.28	10.16	10.99	10.05
H13	46.40	22.23	23.74	24.03
H14	50.51	18.21	19.26	19.65
H15	8.79	5.89	6.10	5.58
H16	14.72	8.50	8.84	8.46
H17	8.93	5.79	6.23	5.74
H18	7.78	5.72	5.78	5.44
H19	16.14	10.11	10.72	10.82
H20	8.84	5.90	6.27	5.87
H21	15.30	7.89	8.13	8.28
H22	17.31	7.96	7.47	7.58
H23	12.43	7.82	8.30	7.54
H24	65.19	29.95	29.80	32.47
H25	25.35	15.10	15.52	15.17

H26	13.54	8.30	8.63	8.67
H27	52.45	26.10	27.31	27.62
H28	38.33	15.29	16.21	16.28