CoS_x/C hierarchical hollow nanocages from metal organic framework as positive electrode with enhancing performance for aqueous supercapacitors

Weibin Zhou^{#,a,b}, Peng Wang^{#,a,b}, Chunyang Li^{a,c}, Qinghong Huang, Jing Wang, Yusong Zhu^{*a,c}, Lijun Fu^{* a,c}, Yuhui Chen ^{a,c}, Yuping Wu^{*a,c}

^a State Key Laboratory of Materials-oriented Chemical Engineering & School of

Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China

^b Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China

^c School of Energy Science and Engineering, Nanjing Tech University, Nanjing
211816, China

^{#:} Equal contribution

^{*} Correspondence authors: Zhu (<u>zhuys@njtech.edu.cn</u>), Fu (<u>l.fu@njtech.edu.cn</u>), Wu (wuyp@fudan.edu.cn)

Fig. S1 SEM images of (a) RF hollow shell and (b,c) $CoS_x/C-2$ hollow nanocages with different magnification

Fig. S2 TG-DSC curves of (a) CoS_x , (b) $CoS_x/C-1$, (c) $CoS_x/C-2$ and (d) $CoS_x/C-3$.

(e) The calculation of Carbon content of composition

Fig. S3 Comparison of CV curves at different scan rates from 5- 100 mV s⁻¹: (a) pristine CoS. (b) pristine CoS_x/C -1. (c) pristine CoS_x/C -2. (d) Comparison of CV curves at 10 mV s⁻¹ for CoS_x , CoS_x/C -1, CoS_x/C -2 and CoS_x/C -3.

Fig. S4 Galvanostatic charge-discharge curves of (a) pristine CoS, (b) pristine CoS_x/C -1, and (c) pristine CoS_x/C -2.