Supplementary Information

Microstructural characterization and film-forming mechanism of phosphate chemical conversion ceramic coating prepared on the surface of 2A12 aluminum alloy

Shuai Huang, Jian Wang, * Xiaowei Wei, Yuli Zhou, Lijun Wang and Jianjun Zhang

Fig. S1. Surface morphology (A) and cross-section morphology (B) of PCC ceramic coatings on the surface of 2 A 12 Al alloys.

Table S1 Weight loss of different types of coating

Coating	weight loss / \%	Reference
Phytic acid conversion coating	>30	$[1]$
Phosphate conversion coatings	~ 40	$[2]$
Calcium phosphate coatings	~ 50	$[3]$
Epoxy coating	>50	$[4]$
Polyurethane coatings	~ 80	$[5]$
Polymeric coatings	>80	$[6]$
Phosphate conversion coatings	28	This work

The references cited above:

[1] R. Y. Zhang, S. Cai, G. H. Xu, Appl. Surf. Sci. 2014, 313, 896-904.
[2] L. P. Wu, L. Zhao, J. H. Dong, Electrochim. Acta, 2014, 145, 71-80.
[3] A. Roy, S. S. Singh, M. K. Datta, Mater. Sci. Eng. B 2011, 176, 1679-1689.
[4] M. Bǔcko, V. Mi'skovi'c-Stankovi'c, J. Rogan, Prog. Org. Coat. 2015, 79, 8-16.
[5] C. K. Patil, H. D. Jirimali, M. S. Mahajan, React. Funct. Polym. 2019, 139, 142152.
[6] C. H. Liu, T. C. Li, J. H. Zhang, Prog. Org. Coat. 2016, 90, 21-27.

Table S2 Critical load (L_{C}) of different types of coating

Types	L_{C} / N	Reference
Zinc Phosphate Conversion Coating	46	$[50]$
Phosphate chemical conversion coating	50.7	$[51]$
Fluoride-phosphate conversion coating	63.5	$[52]$
PCC ceramic coating	178.55	This work

The references cited above:

[50] X. L. Shi, H. M. Zhu, A. Valanezhad, Phys. Status Solidi A, 2018, 215, 1800143 (1-7).
[51] C. C. Jiang, G. Y Xiao, X. Zhang, New J. Chem., 2016, 40, 1347-1353.
[52] S. X. Wang, X. H Liu, L. Q. Wang, RSC Adv., 2017, 7, 16078-16086.

Table S3 Corrosion current density ($\mathrm{I}_{\text {corr }}$), corrosion potential ($\mathrm{E}_{\text {corr }}$) and corrosion inhibition efficiency (η) obtained from potentiodynamic polarization curves.

Sample	$\mathrm{I}_{\text {corr }}\left(\mathrm{A} / \mathrm{cm}^{2}\right)$	$\mathrm{E}_{\text {corr }}(\mathrm{V})$	η
2 A 12 Al substrate	1.603×10^{-4}	-1.264	-
PCC ceramic coating	1.382×10^{-7}	-1.099	99.91%

