SUPPORTING INFORMATION

Surface Amino-Functionalization of Sn-Beta Zeolite Catalyst for Lactic Acid Production from Glucose

Zheng Shen,^{ab} Ling Kong,^a Wei Zhang,^b Minyan Gu,^a Meng Xia,^b Xuefei Zhou ^b and Yalei Zhang *ab

Supporting figures

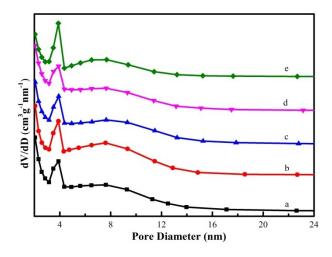


Fig.S1 BJH pore size distribution curves of the samples. The samples are: (a) Beta, (b) deal-Beta, (c) Sn-Beta, (d) Sn-Beta-NH₂₍₃₀₎ and (e) Sn-Beta-NH₂₍₂₀₀₎.

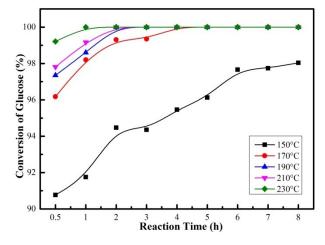


Fig.S2 Effect of reaction temperature and reaction time on conversion of glucose over Sn-Beta-NH₂₍₃₀₎ catalyst. Reaction conditions: 225 mg of glucose, 160 mg of catalyst, 10 mL of H₂O.

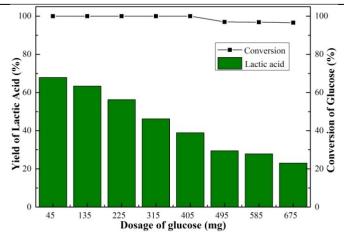


Fig.S3 Effect of glucose dosage on yield of LA over Sn-Beta-NH₂₍₃₀₎ catalyst. Reaction conditions: 160 mg of catalyst, 10 mL of H₂O, 190°C, 2 h

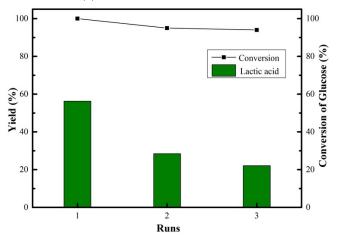
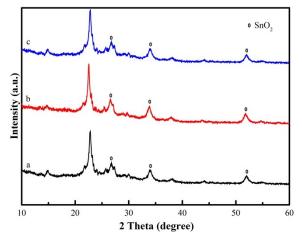



Fig.S4 Recyclability tests of Sn-Beta-NH₂₍₃₀₎ catalysts on conversion of glucose. Reaction conditions: 225 mg of glucose, 160 mg of catalyst, 10 mL of H₂O.

 $\label{eq:Fig.S5} Fowder \ XRD \ patterns \ of \ (a) \ Sn-Beta-NH_{2(30)}-1 \ run, \ (b) \ Sn-Beta-NH_{2(30)}-2 \ runs, \ (c) \ Sn-Beta-NH_{2(30)}-3 \ runs.$

Table S1 The C and N contents of reusing Sn-Beta- $NH_{2(30)}$ catalysts

Runs —	С	Ν
	wt%	wt%
1	2	0.2
2	8	0.1
3	9	0.1

Determined by CHN elemental analysis.