RSC

ADVANCES

Electronic Supplementary Information

Application of surface-enhanced resonance Raman scattering (SERS) to the study of organic functional materials: electronic structure and charge transfer properties of 9,10-bis((*E*)-2-(pyridin-4-yl)vinyl)anthracene

by

Juan Soto,* Elizabeth Imbarack, Isabel López-Tocón, Santiago Sánchez-Cortés, Juan C. Otero, and Patricio Leyton

CONTENTS

Fig. S1	Calculated normal Raman spectrum of <i>C</i> _s -BP4VA at 514.5 and 1064 nm
Fig. S2	Graphical representation of normal modes of C_{s} -BP4VAS4
Table S1	Assignment of Raman active modes of C_{s} -BP4VAS6
Fig. S3	CAM-B3LYP/def2-TZVPP geometries of the MA complexes: (i) Ag_3^+ ; (ii) Ag_5^+ ; (iii) Ag_7^+ ; (iv) Ag_2^0 ; (v) Ag_7^- ; (vi) Ag_5^- ; (vii) Ag_3^-
Fig S4	Calculated SERS spectra of (C_s -BP4VA)-silver complexes at λ_{exc} = 514.5 nm. Spectra convoluted with a Voigt function (1:1) of HWHM = 5 cm ⁻¹ . (CAM-B3LYP/def2-TZVPP). On top (green) S ₀ -D ₀ charge transfer spectrum of the isolated molecule
Table S2	Charge transfer states of the BP4VA-metal complexes
Fig S5	SERS spectra at λ_{exc} = 785 nm of BP4VA/Na ₂ SO ₄ (10 ⁻⁴ M/0.1 M) aqueous solution on silver at different electrode potentials (reference electrode Ag/AgCI/KCI sat.)
Fig S6	(a) CT spectra of the hypothetic S ₀ -D ₀ transition for BP4VA conformers. CAM-B3LYP/def2-TZVPP. (i) C_2 -BP4VA; (ii) C_r -BP4VA; (iii) C_s -BP4VA; (iv) C_2 -BP4VA (b) Electron acceptor orbital of the radical anionS11
Fig S7	Calculated SERS spectra of BP4VA-silver complexes at λ_{exc} = 514.5 nm: (a) $C_2(a)$ -Ag ₂ ; (b) Ag ₂ - $C_2(a)$ -Ag ₂ ; (c) C_s -Ag ₂ . Spectra convoluted with a Voigt function (1:1) of HWHM = 5 cm ⁻¹ . (CAM-B3LYP/def2-TZVPP)S12
Table S3	Relative intensities of the resonant SERS band recorded at 1555 cm ⁻¹ (514.5nm) and 1558 (785nm) with respect to that recorded at 1627 and 1631 cm ⁻¹

The Raman spectra of C_s -BP4VA given in Figs. 1 and S1 have been calculated with Eq. (S1), where the intensity of *k*-th mode is given by the differential cross section (units of cm²/sr)

$$I_k = \frac{d\sigma}{d\Omega} = \frac{\pi^2}{\varepsilon_0^2} (\tilde{\nu}_1 - \tilde{\nu}_k)^4 \frac{h}{8\pi^2 c \tilde{\nu}_k} (S_k/45) \frac{1}{1 - \exp(hc \tilde{\nu}_k/k_B T)}$$
(S1)

 S_k is the scattering factor (units in Å⁴/amu) calculated with the polarizability gradient method

$$S_k = 45 \left(\frac{d\alpha}{dQ_k}\right)^2 + 7 \left(\frac{d\gamma}{dQ_k}\right)^2 \tag{S2}$$

 ε_0 is the permittivity of vacuum, *c* is the speed of light, *h* is the Planck constant, $k_{\rm B}$ is the Boltzmann constant, *T* is the temperature, $\tilde{\nu}_1$ is the wavenumber of the incident light, $\tilde{\nu}_k$ is the wavenumber of the *k*-th vibrational mode.

Fig S1. Calculated normal Raman spectrum of C_s -BP4VA at 514.5 and 1064 nm. Convoluted with a Voigt function (1:1) and HWHM = 5 cm⁻¹.

Fig S2 (continue). Active normal Raman modes of C_s -BP4VA.

 $\frac{9b + \delta(C=C-H)}{1236 \text{ cm}^{-1}}$

Fig S2 (continuation). Active normal Raman modes of *C*_s-BP4VA.

Observed ^a	Calculated ^b	Ratio	Assignment
1636	1738	0.94	v(C=C) vinylene
1596	1677	0.95	8(a) pyridine
1559	1642	0.95	8a [1] anthracene
1412	1477	0.96	8a [2] anthracene
1339	1384	0.97	14 pyridine
1308	1356	0.96	δ (C=C-H) hydrogen bending
1268	1317	0.96	1 anthracene
1237	1283	0.96	3 pyridine
1220	1267	0.96	9a anthracene
1200	1259	0.95	9a pyridine
1175	1235	0.95	9b + δ(C=C-H)
1083	1117	0.97	
1027	1065	0.96	
992	1030	0.96	12 pyridine
971	1021	0.95	γ(C-H)
477	498	0.96	γ(C-C)
431	442	0.98	δ(C-C)
398	405	0.98	δ(C-C)

 Table S1. Vibrational assignment of the Raman spectrum of solid BP4VA.

^aObserved frequencies in cm⁻¹ (Fig. 1). ^bCAM-B3LYP/def2TZVPP C_s -conformer.

Fig. S3. CAM-B3LYP/def2-TZVPP geometries of the MA complexes: (i) Ag_3^+ ; (ii) Ag_5^+ ; (iii) Ag_7^+ ; (iv) Ag_2^0 ; (v) Ag_7^- ; (vi) Ag_5^- ; (vii) Ag_3^- .

Fig S4. Calculated SERS spectra of (C_s -BP4VA)-silver complexes at λ_{exc} = 514.5 nm. Spectra convoluted with a Voigt function (1:1) of HWHM = 5 cm⁻¹. (CAM-B3LYP/def2-TZVPP). On top (green) S₀-D₀ charge transfer spectrum of the isolated molecule.

Species	State ^c	$\Delta Q_M{}^d$	ΔQ_1^d	$\Delta Q_2{}^d$	ΔQ_3^d	ΔQ_4^d	ΔQ_5^d
Ag ₃ ⁺ -BP4VA	S ₁ (1.33)	-0.82	+0.61	+0.04	+0.05	+0.03	+007
	S ₄ (2.88)	-0.82	+0.67	+0.00	+0.04	+0.02	+0.10
Ag ₅ ⁺ -BP4VA	S ₁ (1.42)	-0.85	+0.63	+0.05	+0.06	+0.04	+0.08
	S ₅ (2.96)	-0.86	+0.69	+0.01	+0.04	+0.03	+0.10
Ag ₇ ⁺ -BP4VA	S ₂ (1.54)	-0.87	+0.64	+0.05	+0.6	+0.05	+0.08
	S ₇ (2.91)	-0.87	+0.63	+0.05	+0.06	+0.05	+0.08
Ag ₂ ⁰ -BP4VA	S ₁ (2.69)	+0.81	-0.18	-0.13	-0.02	-0.44	-0.04
	S ₅ (3.83)	+0.80	-0.05	-0.02	-0.01	-0.71	-0.02
Ag ₇ -BP4VA	S ₂ (1.63)	+0.86	-0.27	-0.12	-0.04	-0.35	-0.09
	S ₄ (2.02)	+0.90	-0.47	-0.10	-0.05	-0.19	-0.10
	S ₅ (2.13)	+0.93	-0.25	-0.02	-0.20	-0.03	-0.44
	S ₆ (2.51)	+0.85	-0.08	-0.03	-0.01	-0.70	-0.03
	S ₇ (2.53)	+0.85	-0.35	-0.09	-0.04	-0.28	-0.08
Ag ₅ -BP4VA	S ₂ (1.27)	+0.88	-0.23	-0.14	-0.04	-0.39	-0.09
	S ₃ (1.68)	+0.93	-0.26	-0.02	-0.19	-0.04	-0.43
	S ₄ (1.68)	+0.91	-0.50	-0.08	-0.06	-0.16	-0.11
	S ₆ (2.17)	+0.86	-0.06	-0.03	-0.01	-0.74	-0.02
	S ₇ (2.31)	+0.93	-0.76	-0.02	-0.02	-0.06	-0.06
	S ₈ (2.35)	+0.92	-0.48	-0.08	-0.06	-0.18	-0.12
	S ₉ (2.54)	+0.89	-0.28	-0.14	-0.04	-0.35	-0.09
	S ₁₀ (2.71)	+0.94	-0.07	-0.01	-0.03	-0.03	-0.80
Ag ₃ -BP4VA	S ₄ (1.53)	+0.96	-0.55	-0.07	-0.07	-0.14	-0.13
	S ₅ (1.78)	+0.95	-0.75	-0.02	-0.02	-0.10	-0.05
	S ₆ (1.87)	+0.91	-0.07	-0.02	-0.01	-0.78	-0.02
	S ₇ (2.12)	+0.96	-0.07	-0.01	-0.03	-0.05	-0.80
	S ₈ (2.42)	+0.94	-0.24	-0.13	-0.07	-0.33	-0.17
	S ₉ (2.47)	+0.95	-0.64	-0.02	-0.03	-0.12	-0.13
	S ₁₀ (2.54)	+0.95	-0.33	-0.07	-0.12	-0.18	-0.26
	S ₁₄ (3.04)	+0.93	-0.37	-0.10	-0.06	-0.22	-0.17

Table S2. Charge transfer states of the BP4VA-metal complexes.^{a,b}

^aCAM-B3LYP/def2-TZVPP. ^bNegative transferred charge implies that the fragment increases its electron charge. ^cExcitation energy in eV. ^dTransferred charge on M: silver cluster; 1: anthracene; 2,3: vinyl; 4,5: pyridyl.

Fig S5. SERS spectra at λ_{exc} = 785 nm of BP4VA/Na₂SO₄ (10⁻⁴ M/0.1 M) aqueous solution on silver at different electrode potentials (reference electrode Ag/AgCl/KCl sat.).

Fig S6. (a) CT spectra of the hypothetic S_0 - D_0 transition for BP4VA conformers. CAM-B3LYP/def2-TZVPP. (i) C_2 -BP4VA; (ii) C_7 -BP4VA; (iii) C_s -BP4VA; (iv) C_2 -BP4VA. (b) Electron acceptor orbital of the radical anion.

Fig S7. Calculated SERS spectra of BP4VA-silver complexes at λ_{exc} = 514.5 nm: (a) $C_2(a)$ -Ag₂; (b) Ag₂- $C_2(a)$ -Ag₂; (c) C_s -Ag₂. Spectra convoluted with a Voigt function (1:1) of HWHM = 5 cm⁻¹. (CAM-B3LYP/def2-TZVPP).

Electrode Potential /V	Relative Intensity		Resonance factor			
	514.5 nm	785 nm	514.5nm/785nm			
	1 ₁₅₅₅ /1 ₁₆₂₇	I ₁₅₅₈ /I ₁₆₃₁	2.41			
00	2.22	0.92	2.41			
0.0	2.12	0.89	2.38			
-0.1	2.10	0.88	2.38			
-0.2	2.09	0.93	2.24			
-0.3	2.21	0.93	2.38			
-0.4	2.30	0.93	2.47			
-0.5	2.10	0.94	2.23			
-0.6	2.12	0.99	2.14			
-0.7	2.21	0.99	2.23			
-0.8	2.24	0.99	2.26			
-0.9	2.20	1.08	2.04			
-1.0	2.25	1.16	1.93			
-1.1	2.26	1.00	2.26			
-1.2	2.26	1.27	1.78			
	Statistics Data ^a					
	Mean 225					
	Sta	Indard Deviation	0.15			

Table S3. Relative intensities of the resonant SERS band recorded at 1555 cm⁻¹ (514.5nm) and 1558 (785nm) with respect to that recorded at 1627 and 1631 cm⁻¹.

^aObtained considering all data except the last value obtained at -1.2 V.