Supporting Information

Solvatochromism and pH effect on emission of triphenyl imidazolephenylacrylonitrile derivative. Experimental and DFT studies

Karnambaram Anandhan^a, Margarita Cerón^a, Venkatesan Perumal^a, Paulina Ceballos^a, Paola Gordillo-Guerra^a, Enrique Pérez-Gutiérrez^a, Armando E.Castillo^a, Subbiah Thamotharan^b and M. Judith Percino^{a*}

Table of Contents

IR spectrum of the (Z)-3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-2-phenylacrylonitrile	S2
¹ H-and ¹³ C -NMR spectra of the (Z)-3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-2-phenylacrylonitrile (2)	S3
MS-(ESI) spectra of the (Z)-3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-2-phenylacrylonitrile (2)	S4
Figure S1. The relationship between stokes shift (nm) and the solvent polarity for the compound 2 in different solvent	S5
Figure S2. Absorption spectrum of compound 2 in different solvents	S6
Figure S3. Absorption onset spectroscopically determined the energy gap for the compound 2 in different solvents	S7
Figure S4. Absorption onset, spectroscopically determined the energy gap for the compound 2 in pH2, 7, 14	S8
Fluorescence quantum yield calculation	
Figure S5 Cyclic Voltagramms of the compound 2 in DCM	S9
Table S1 Crystal data and refinement parameters for compound 2	S10
Table S2. Selected dihedral angles (°) for compound 2	S11
Table S3. Bond lengths (Å) for data of compound 2	S12
Table S4. Bond angles (°) for compound 2	S13
Table S5. Torsion angles (°) for compound 2	S14
Table S6. The data of absorption, emission for the compound 2 in the solid state.	S16
Table S7. Optoelectronic properties for Compound 2 at B3LYP/MIDIX level of theory.	S17
Table S8. Experimental and computed absorption wavelength (λ , in nm) for compound 2. The B3LYP/6-311+G(d p) level of the was used for this calculation	S17
Table S9 Computed absorption wavelength (λ , in nm) for compound 2 in cation and anion environment.	
The B3LYP/6-311+G(d,p) level of the was used for this calculation. Table S10 The selected second order perturbation energy $(F^2$ in kcal mol ⁻¹) for title compound at neutral environment	
Table S11 The selected second order perturbation energy (E^2 in keal mol ⁻¹) for compound 2 at cation environment	S19
Table S12. The selected second order perturbation energy (E^2 in kcal mol ⁻¹) for title compound 2 at earlier environment.	
Tuble 512. The selected second order perturbation energy (12 in Kear more) for the compound at among environment.	

IR spectrum of the (Z)-3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-2-phenylacrylonitrile (2).

¹H-and ¹³C -NMR spectra of the (Z)-3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-2-phenylacrylonitrile (**2**).

3

MS-(ESI) spectra of the (Z)-3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-2-phenylacrylonitrile (2).

The Lippert-Mataga plot

The expression for $\Delta f(\varepsilon, n)$, given as,

$$\Delta f(\varepsilon,n) = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1} \tag{1}$$

Where ε and n are the dielectric constant and refractive index of the solvents, respectively.

Figure S1. The relationship between stokes shift (nm) and the solvent polarity parameter for the compound 2 in different solvent.

Optical band gap calculation

$$\alpha h v = (h v - Eg)^n \tag{2}$$

Where α is the absorbance, E_{gap} is the band gap corresponding to absorption of photon energy at *hv* and *n* is $\frac{1}{2}$ for allowed direct, 3/2 for forbidden direct, 2 for allowed indirect and 3 for forbidden indirect transitions in the materials. The direct band where obtained from extrapolation of the straight-line portion of their $(\alpha hv)^2$ versus hv plots to $\alpha = 0$

For E_{gap} values are calculated from spectra, it was used a straight line was fitted to the edge of spectra and its intersection with the corrected baseline was determined.

Figure -S2 absorption spectra of the compound 2 in the various solvents.

Figure S3 Absorption onset, spectroscopically determined the energy gap for the compound 2 in different solvents.

Figure S4. Absorption onset, spectroscopically determined the energy gap for the compound 2 in pH 2, pH 7 and pH 14

Fluorescence quantum yield

The PL quantum yield (ϕ_F) were evaluated according to the following equation (1) and using a fluorescein solution of 0.1 M NaOH as reference (r).

$$\Phi_{x} = \Phi_{r} \left(\frac{Grad_{x}}{Grad_{r}} \right) \left(\frac{\eta_{x}^{2}}{\eta_{r}^{2}} \right)$$
(3)

Where Φ is the fluorescence quantum yield, *Grad* refers to the gradient from the plot of integrated fluorescence intensity (excited at 405 nm) against the absorbance, η is the refractive index of the solvent, and the subscripts r and x mean the standard and test sample respectively.¹

The Cyclo voltagrammetric studies

Electrochemical properties of the compound **2** were evaluated by cyclovoltammetry (CV) in DCM with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte at a scan rate of 50 mV⁻¹s. The Pt acted as the working and saturated calomel electrode (SCE) as the reference electrode. This method is widely used for estimating the energy level of the organic compound. From the oxidation (Ip) and reduction (Ea) potential, the HOMO and LUMO energy levels were calculated using the equation (**3**) and (**4**) and the band gap Egap deduced from equation (**5**). ^{2,3}

$$Ip = -(Eox + 4.4) eV,$$
 (3)

$$Ea = -(Ered + 4.4) eV,$$
 (4)

$$Eg = Ip - Ea$$
 (5)

Fig S5 Cyclic Voltagrams of the compound 2 in DCM (50mV/s scan rate)

Parameters	Values
Chemical formula	C30H21N3·2(H2O)
Mw	459.53
Crystal system,	Monoclinic, P21/c
space group	
Temperature (K)	110
a, b, c (Å)	19.3734 (9), 7.6646 (4), 16.9594
	(6)
β (°)	110.353 (4)
V (A3)	2361.07 (19)
Z	4
Radiation type	Cu Kα
μ (mm-1)	0.65
Crystal size (mm)	$0.18 \times 0.06 \times 0.02$
Data collection	
Diffractometer	SuperNova, Dual, Cu at zero,
A1 /*	Atlas
Absorption	Analytical numeric absorption
confection	confection using a multifacted
	crystal model based on
	& IS Deid 4 Empirical absorption
	correction using spherical
	harmonics implemented in
	SCALES ABSPACK scaling
	algorithm
Tmin Tmax	0.937 0.990
No of measured	15779 4639 3338
independent and	10,779, 1007, 0000
observed $[I > 2\sigma(I)]$	
reflections	
Rint	0.056
$(\sin \theta / \lambda) \max (\text{Å}-1)$	0.616
Refinement	
$R[F2 > 2\sigma(F2)],$	0.044, 0.111, 1.01
wR(F2), S	
No. of reflections	4639
No. of parameters	331
No. of restraints	7
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
Aomax Aomin (e	0.250.26
Å-3)	······································

Table S1 Crystal data and refinement parameters for compound 2

Bond	Angle (°)
C(1)C(6)-C(7)-N(1)	136.66(18)
C(5)-C(6)-C(7)-N(1)	-41.3(3)
C(1)-C(6)-C(7)-C(8)	-40.2(3)
C(5)-C(6)-C(7)-C(8)	141.9(2)
N(1)-C(7)-C(8)-N(2)	-1.1(2)
N(2)-C(15)-N(1)-C(7)	-0.8(2)
C(8)-C(7)-N(1)-C(15)	1.2(2)
N(1)-C(15)-N(2)-C(8)	0.1(2)
C(7)-C(8)-N(2)-C(15)	0.7(2)
C(6)-C(7)-C(8)-C(9)	-5.3(4)
N(2)-C(8)-C(9)-C(10)	-22.0(3)
C(7)-C(8)-C(9)-C(14)	-20.2(3)
C(8)-C(9)-C(14)-C(13)	176.91(18)
N(2)-C(15)-C(16)-C(21)	21.8(3)
N(1)-C(15)-C(16)-C(17)	22.3(3)
C(18)-C(19)-C(22)-C(23)	-25.6(3)
C(19)-C(22)-C(23)-C(24)	-9.3(3)
C(22)-C(23)-C(25)-C(30)	-21.3(3)
C(24)-C(23)-C(25)-C(26)	-17.1(2)

 Table S2. Selected dihedral angles (°) for compound 2

Table S3. Bond lengths (Å) for data of compound 2

C(1)-C(2)	1.382(3)
C(1)-C(6)	1.397(3)
C(2)-C(3)	1.392(3)
C(3)-C(4)	1.387(3)
C(4)-C(5)	1.388(3)
C(5)-C(6)	1.400(2)
C(6)-C(7)	1.469(3)
C(7)-N(1)	1.383(2)
C(7)-C(8)	1.391(2)
C(8)-N(2)	1.380(2)
C(8)-C(9)	1.475(2)
C(9)-C(10)	1.398(3)
C(9)-C(14)	1.400(3)
C(10)-C(11)	1.392(2)
C(11)-C(12)	1.384(3)
C(12)-C(13)	1.392(3)
C(13)-C(14)	1.391(2)
C(15)-N(2)	1.329(2)
C(15)-N(1)	1.349(2)
C(15)-C(16)	1.468(2)
C(16)-C(21)	1.389(3)
C(16)-C(17)	1.405(2)
C(17)-C(18)	1.379(3)
C(18)-C(19)	1.396(3)
C(19)-C(20)	1.410(2)
C(19)-C(22)	1.456(3)
C(20)-C(21)	1.385(3)
C(22)-C(23)	1.358(2)
C(23)-C(24)	1.439(3)
C(23)-C(25)	1.482(3)
C(24)-N(3)	1.149(3)
C(25)-C(30)	1.398(3)
C(25)-C(26)	1.402(2)
C(26)-C(27)	1.380(3)
C(27)-C(28)	1.384(3)
C(28)-C(29)	1.397(3)
C(29)-C(30)	1.386(3)
N(1)-C(1N)	0.880(18)
O(1W)-H1(W1)	0.84(2)
O(1W)-H1(W2)	0.86(2)
O(2W)-H(2W1)	0.86(2)
C(2W)-H(2W2)	0.84(2)

C(2)-C(1)-C(6)	120.60(16)
C(2)-C(1)-H(1)	119.7
C(6)-C(1)-H(1)	119.7
C(1)-C(2)-C(3)	120.55(18)
C(1)-C(2)-H(2)	119.7
C(3)-C(2)-H(2)	119.7
C(4)-C(3)-C(2)	119.32(19)
C(4)-C(3)-H(3)	120.3
C(2)-C(3)-H(3)	120.3
C(3)-C(4)-C(5)	120.41(17)
C(3)-C(4)-H(4)	119.8
C(5)-C(4)-H(4)	119.8
C(4)-C(5)-C(6)	120.52(17)
C(4)-C(5)-H(5)	119.7
C(6)-C(5)-H(5)	119.7
C(1)-C(6)-C(5)	118.59(17)
C(1)-C(6)-C(7)	121.24(15)
C(5)-C(6)-C(7)	120.13(16)
N(1)-C(7)-C(8)	104.66(16)
N(1)-C(7A)-C(6)	120.46(14)
C(8)-C(7)-C(6)	134.83(15)
N(2)-C(8)-C(7)	109.72(14)
N(2)-C(8)-C(8)	119.67(16)
$\frac{C(2) - C(3) - C(3)}{C(2) - C(3) - C(3)}$	130.59(18)
C(10)-C(9)-C(14)	118.25(15)
C(10)-C(9)-C(8)	119.48(17)
C(14)-C(9)-C(9)	122.27(16)
C(11)-C(10)-C(9)	120.89(18)
C(11)-C(10)-H(10)	119.6
C(9)-C(10)-H(10)	119.6
C(12)-C(11)-C(10)	120.26(17)
C(12)-C(11)-H(11)	119.9
C(10)-C(11)-H(11)	119.9
C(11)-C(12)-C(13)	119.56(15)
C(11)-C(12)-H(12)	120.2
C(13)-C(12)-H(12)	120.2
C(14)-C(13)-C(12)	120.25(18)
C(14)-C(13)-H(13)	119.9
C(12)-C(13)-H(13)	119.9
C(13)-C(14)-C(9)	120.68(17)
C(13)-C(14)-H(14)	119.7
C(9)-C(14)-H(14)	119.7
N(2)-C(15)-N(1)	111.01(16)
N(2)-C(15)-C(16)	124.79(17)
N(1)-C(15)-C(16)	124.19(14)
C(21)-C(16)-C(17)	119.15(16)
- (-) -() -(-')	

Table S4.	. Bond	angles	(°)	for	comp	ound	2
-----------	--------	--------	-----	-----	------	------	---

C(21)-C(16)-C(15)	121.03(14)
C(17)-C(16)-C(15)	119.80(17)
C(18)-C(17)-C(16)	120.18(17)
C(18)-C(17)-H(17)	119.9
С(16)-С(17)-Н(17)	119.9
C(17)-C(18)-C(19)	121.21(15)
C(17)-C(18)-H(18)	119.4
С(19)-С(18)-Н(18)	119.4
C(18)-C(19)-C(20)	118.27(17)
C(18)-C(19)-C(22)	122.91(15)
C(20)-C(19)-C(22)	118.78(17)
С(21)-С(20)-Н(19)	120.50(18)
С(21)-С(20)-Н(20)	119.7
C(19)-C(20)-H(20)	119.7
C(20)-C(21)-C(16)	120.65(15)
C(20)-C(21)-H(21)	119.7
C(16)-C(21)-H(21)	119.7
C(23)-C(22)-C(19)	127.72(18)
C(23)-C(22)-H(22)	116.1
C(19)-C(22)-H(22)	116.1
C(22)-C(23)-C(24)	120.07(17)
C(22)-C(23)-C(25)	124.11(18)
C(24)-C(23)-C(25)	115.75(14)
N(3)-C(24)-C(23)	177.5(2)
C(30)-C(25)-C(26)	118.54(17)
C(30)-C(25)-C(23)	120.98(15)
C(26)-C(25)-C(23)	120.47(17)
C(27)-C(26)-C(25)	120.75(18)
C(27)-C(26)-H(26)	119.6
C(25)-C(26)-H(26)	119.6
C(26)-C(27)-C(28)	120.51(16)
C(26)-C(27)-H(27)	119.7
C(28)-C(27)-H(27)	119.7
C(27)-C(28)-C(29)	119.39(18)
C(27)-C(28)-H(28)	120.3
C(29)-C(28)-H(28)	120.3
C(30)-C(29)-C(28)	120.35(19)
C(30)-C(29)-H(29)	119.8
C(28)-C(29)-H(29)	119.8
C(29)-C(30)-C(25)	120.43(16)
C(29)-C(30)-H(30)	119.8
C(25)-C(30)-H(30)	119.8
C(15)-N(1)-C(7)	108.52(13)
C(15)-N(1)-N(1N)	125.4(15)
C(7)-N(1)-N(N1)	126.1(15)
C(15)-N(2)-C(8)	106.07(15)
H(1W1)-O(1W)-H(1W2)	108(2)
H(2W1)-O(2W)-H(2W2)	112(2)

C(6)-C(1)-C(2)-C(3)	0.0(3)
C(1)-C(2)-C(3)-C(4)	0.7(3)
C(2)-C(3)-C(4)-C(5)	-0.6(3)
C(3)-C(4)-C(5)-C(6)	-0.2(3)
C(2)-C(1)-C(6)-C(5)	-0.8(3)
C(2)-C(1)-C(6)-C(7)	-178.73(17)
C(4)-C(5)-C(6)-C(1)	0.9(3)
C(4)-C(5)-C(6)-C(7)	178.87(17)
C(1)C(6)-C(7)-N(1)	136.66(18)
C(5)-C(6)-C(7)-N(1)	-41.3(3)
C(1)-C(6)-C(7)-C(8)	-40.2(3)
C(5)-C(7)-C(7)-C(8)	141.9(2)
N(1)-C(7)-C(8)-N(2)	-1.1(2)
C(6)-C(7)-C(8)-N(2)	176.1(2)
N(1)-C(7)-C(8)-C(9)	177.52(18)
C(6)-C(7)-C(8)-C(9)	-5.3(4)
N(2)-C(8)-C(9)-C(10)	-22.0(3)
C(7)-C(8)-C(9)-C(10)	159.4(2)
N(2)-C(8)-C(9)-C(14)	158.29(18)
C(7)-C(8)-C(9)-C(14)	-20.2(3)
C(14)-C(9)-C(10)-C(11)	3.1(3)
C(8)-C(9)-C(10)-C(11)	-176.63(18)
C(9)-C(10)-C(11)-C(12)	-0.6(3)
C(10)-C(11)-C(12)-C(13)	-2.2(3)
C(11)-C(12)-C(13)-C(14)	2.4(3)
C(12)-C(13)-C(14)-C(9)	0.1(3)
C(10)-C(9)-C(14)-C(13)	-2.8(3)
C(8)-C(9)-C(14)-C(13)	176.91(18)
N(2)-C(15)-C(16)-C(21)	21.8(3)
N(1)-C(15)-C(16)-C(21)	-159.52(18)
N(2)-C(15)-C(16)-C(17)	-156.48(18)
N(1)-C(15)-C(16)-C(17)	22.3(3)

Table S5 Torsion	angles (°) for compound 2

C(21)-C(16)-C(17)-C(18)	0.5(3)
C(15)-C(16)-C(17)-C(18)	178.76(17)
C(16)-C(16)-C(18)-C(19)	0.3(3)
C(17)-C(18)-C(19)-C(20)	-1.7(3)
C(17)-C(18)-C(19)-C(22)	-179.49(18)
C(18)-C(19)-C(20)-C(21)	2.3(3)
C(22)-C(19)-C(20)-C(21)	-179.83(18)
C(19)-C(20)-C(21)-C(16)	-1.5(3)
C(17)-C(16)-C(21)-C(20)	0.1(3)
C(15)-C(16)-C(21)-C(20)	-178.13(17)
C(18)-C(19)-C(22)-C(23)	-25.6(3)
C(20)-C(19)-C(22)-C(23)	156.7(2)
C(19)-C(22)-C(23)-C(24)	-9.3(3)
C(19)-C(22)-C(23)-C(25)	173.71(17)
C(22)-C(23)-C(25)-C(30)	-21.3(3)
C(24)-C(23)-C(25)-C(30)	161.58(17)
C(22)-C(23)-C(25)-C(26)	160.00(18)
C(24)-C(23)-C(25)-C(26)	-17.1(2)
C(30)-C(25)-C(26)-C(27)	1.8(3)
C(23)-C(25)-(26)-C(27)	-179.43(17)
C(25)-C(26)-C(27)-C(28)	-0.7(3)
C(26)-C(27)-C(28)-C(29)	-0.6(3)
C(27)-C(28)-C(29)-C(30)	0.7(3)
C(28)-C(29)-C(29)-C(25)	0.5(3)
C(26)-C(25)-C(30)-C(29)	-1.7(3)
C(23)-C(25)-C(30)-C(29)	179.53(17)
N(15)-C(15)-N(1)-C(7)	-0.8(2)
C(16)-C(15)-N(1)-C(7)	-179.70(17)
C(8)-C(7)-N(1)-C(15)	1.2(2)
C(6)-C(7)-N(1)-C(15)	-176.54(17)
N(1)-C(15)-N(2)-C(8)	0.1(2)
C(16)-C(15)-N(2)-C(8)	178.97(17)
C(7)-C(8)-N(2)-C(15)	0.7(2)
C(9)-C(8)-N(2)-C(15)	-178.15(16)

Nature	λ _{abs} (nm)	λ _{em} (nm)	$\Phi_{\rm F}$
Powder	420 br	563	0.16
Thin film	388	540	ND

Table S6. The data of absorption, emission for the compound 2 in the solid state.

 $\lambda_{abs} = Maximum absorption wavelength; \lambda_{em} = Maximum absorption wavelength^1; \Phi F =$

Quantum yield; ND = Not determined.

Parameters	Values
Oxidation Potential (eV)	1.2822
Reduction Potential (eV)	-
	1.4001
Hole Reorganization Energy (HER) (eV)	0.2174
Electron Reorganization Energy	0.3238
(ERE)(eV)	
Triplet Energy (eV)	1.8327
Lmax (nm)	412
Emax (nm)	458
Stokes Shift	46
Triplet Stabilization Energy (eV)	0.5449
Hole Extraction Potential (eV)	6.3368
Electron Extraction Potential (eV)	-
	1.2032
Scaled HOMO (eV)	-
	5.8121
Scaled LUMO (eV)	_
	3.1299
Electron Small Polaron Stabilization	0.1859
Energy (eV)	
Hole Small Polaron Stabilization Energy (eV)	0.1191
Triplet Reorganization Energy (eV)	2.008
T1 Vertical Emission (eV)	0.3019
T1 Vertical Absorption (eV)	2.3100
T1 Raw Triplet Energy (eV)	1.7651
S1-T1 Gap (eV)	1.8530
S1-T2 Gap (eV)	0.2558
S1-T3 Gap (eV)	_
1 \ /	0.7439
Dipole (D)	1.0851

Table S7. Optoelectronic properties for Compound 2 at B3LYP/MIDIX level of theory.

All torsion angles follow the convention defined by Allen & Rogers (Allen, F.H. & Rogers,

D. (1969) Acta Cryst. **B25**, 1326-1330)

λ_{abs} (DFT)	eV	f	Major Transition (%)	λ_{exp}	λ_{abs} (DFT)	eV	f	Major Transition (%)	λ_{exp}
			Gas		Cloroform				
444	2.79	0.999	$H \rightarrow L (99)$		458	2.71	1.180	$H \rightarrow L (99)$	
341	3.63	0.573	$H-1 \rightarrow L (87)$		345	3.60	0.418	$H-1 \rightarrow L (95)$	375
329	3.81	0.246	$H \rightarrow L+1$ (86)		325	3.81	0.263	$H \rightarrow L+1 (94)$	297
1,4-Dioxane					Ethyl acetate				
457	2.71	1.175	$H \rightarrow L (99)$		456	2.72	1.162	$H \rightarrow L (99)$	
345	3.59	0.435	$H-1 \rightarrow L (95)$	378	344	3.60	0.421	$H-1 \rightarrow L (95)$	376
327	3.79	0.256	$H \rightarrow L+1 (93)$	300	324	3.82	0.255	$H \rightarrow L+1 (94)$	293
Major Transition				Major Transition					
457	2.72	1.170	$H \rightarrow L (99)$		457	2.71	1.174	$H \rightarrow L (99)$	
344	3.60	0.416	$H-1 \rightarrow L (95)$	381	344	3.60	0.413	$H-1 \rightarrow L (96)$	371
324	3.82	0.260	$H \rightarrow L+1 (94)$	305	324	3.82	0.263	$H \rightarrow L+1 (94)$	281
Metanol				DMF					
455	2.73	1.149	$H \rightarrow L (99)$		457	2.71	1.176	$H \rightarrow L (99)$	
343	3.61	0.415	$H-1 \rightarrow L (95)$	370	344	3.60	0.407	$H-1 \rightarrow L (96)$	382
323	3.84	0.252	$H \rightarrow L+1 (94)$	290	324	3.83	0.265	$H \rightarrow L+1 (94)$	300
DMSO									
457	2.72	1.173	$H \rightarrow L (99)$						
344	3.60	0.407	$H-1 \rightarrow L (96)$	385					
324	3.83	0.264	$H \rightarrow L+1 (94)$	297					

Table S8. Experimental and computed absorption wavelength (λ , in nm) for compound **2**. (The B3LYP/6-311+G(d,p) level) of the was used for this calculation.

		Catior	1	Anion				
λ_{abs} (DFT)	eV	f	Major Transition (%)	λ _{abs} (DFT)	eV	f	Major Transition (%)	
Gas								
441	2.81	1.229	$H \rightarrow L (99)$	582	2.13	1.293	$H \rightarrow L (96)$	
365	3.39	0.083	H-2→ L (98)	389	3.19	0.027	$H \rightarrow L+3 (63)$	
317	3.91	0.058	$H \rightarrow L+1 (98)$				$H \rightarrow L+2 (17)$	
				372	3.33	0.114	$H \rightarrow L+2 (71)$	
							$H \rightarrow L+3 (12)$	
THF								
418	2.97	1.456	$H \rightarrow L (99)$	563	2.20	1.303	$H \rightarrow L (100)$	
356	3.48	0.033	$H-1 \rightarrow L (98)$	370	3.35	0.209	$H \rightarrow L+1 (96)$	
300	4.13	0.050	H-4→ L (85)	350	3.54	0.361	$H-2 \rightarrow L (69)$	
							$H-3 \rightarrow L (15)$	

Table S9 Computed absorption wavelength (λ , in nm) for compound 2 in cation and anion environment. The B3LYP/6-311+G(d,p) level of the was used for this calculation.

Donor NBO (i)	Acceptor NBO (j)	E ²	Donor NBO (i)	Acceptor NBO (j)	E ²		
Phenyl	Ring 1 (atoms 1-11)		Phenylacrylnitrile moiety				
BD (2) C 1 - C 3	BD*(2)C9-C11	20.58	BD (1) C 38 - C 40	BD*(2)C40-C41	753.42		
BD (2) C 5 - C 7	BD*(2) C 9 - C 11	20.37	BD (1) C 38 - C 39	BD*(1) C 40 - C 41	706.11		
BD (2) C 9 - C 11	BD*(2) C 5 - C 7	20.31	BD (1) C 36 - C 38	BD*(1) C 40 - C 41	437.57		
BD (2) C 1 - C 3	BD*(2) C 5 - C 7	20.25	BD (2) C 39 - N 54	BD*(3) C 39 - N 54	252.49		
BD (2) C 5 - C 7	BD*(2) C 1 - C 3	19.80	BD (1) C 41 - C 43	BD*(2) C 40 - C 41	119.45		
BD (2) C 9 - C 11	BD*(2) C 1 - C 3	18.80	BD (2) C 40 - C 41	BD*(2) C 43 - C 45	74.72		
Phenyl Ring 2	(atoms 14-24)		BD (1) C 41 - H 42	BD*(3) C 39 - N 54	59.00		
BD (2) C 14 - C 23	BD*(2) C 19 - C 21	20.92	BD (1) C 39 - N 54	BD*(1) C 40 - C 41	49.06		
BD (2) C 15 - C 17	BD*(2) C 19 - C 21	20.64	BD (1) C 40 - C 49	BD*(2) C 40 - C 41	45.89		
BD (2) C 15 - C 17	BD*(2) C 14 - C 23	20.06	BD (2) C 36 - C 38	BD*(3) C 39 - N 54	35.96		
BD (2) C 14 - C 23	BD*(2) C 15 - C 17	19.45	BD (2) C 47 - C 49	BD*(2) C 43 - C 45	35.30		
BD (2) C 19 - C 21	BD*(2) C 14 - C 23	16.17	BD (2) C 36 - C 38	BD*(2) C 43 - C 45	32.08		
BD (2) C 19 - C 21	BD*(2) C 15 - C 17	15.85	BD (1) C 40 - C 41	BD*(3) C 39 - N 54	32.06		
Phenyl Ring 3 (atoms 26-3	5)		BD (1) C 38 - C 39	BD*(3) C 39 - N 54	28.95		
BD (2) C 26 - C 34	BD*(2) C 31 - C 32	23.10	BD (1) C 39 - N 54	BD*(2) C 36 - C 38	18.98		
BD (2) C 31 - C 32	BD*(2) C 36 - C 38	22.28	BD (1) C 38 - C 39	BD*(3) C 39 - N 54	16.82		
BD (2) C 31 - C 32	BD*(2) C 26 - C 34	20.74	BD (2) C 40 - C 41	BD*(2) C 36 - C 38	15.31		
BD (2) C 27 - C 29	BD*(2) C 26 - C 34	19.80					
BD (2) C 26 - C 34	BD*(2) C 25 - N 53	19.35	Lone pair	electrons in nitrogen atoms			
BD (2) C 31 - C 32	BD*(2) C 27 - C 29	19.79	LP(1)N 51	BD*(2) C 12 - C 13	32.07		
BD (2) C 26 - C 34	BD*(2) C 27 - C 29	18.77	LP(1)N 51	D*(2) C 25 - N 53	47.01		
BD (2) C 27 - C 29	BD*(2) C 31 - C 32	17.54	LP (1) N 53	BD*(1) C 25 - N 51	8.49		
Imidazole rin	g (atoms 12,13,25,51-53)		LP (1) N 53	BD*(1) C 12 - C 13	5.78		
BD (2) C 25 - N 53	BD*(2) C 12 - C 13	21.75	LP(1)N 54	BD*(2) C 36 - C 38	6.23		
BD (1) C 12 - C 13	BD*(2) C 25 - N 53	15.44					
BD (2) C 14 - C 23	BD*(2) C 12 - C 13	12.33					
BD (1) C 12 - C 13	BD*(2) C 14 - C 23	8.99					
BD (2) C 25 - N 53	BD*(2) C 26 - C 34	8.74					
BD (1) C 12 - C 13	BD*(2) C 9 - C 11	8.27					
BD (1) C 13 - N 53	BD*(1) C 25 - C 26	6.12					
BD (1) C 12 - C 13	BD*(1) C 11 - C 12	4.81					

Table S10 The selected second order perturbation energy (E^2 in kcal mol⁻¹) for compound **2** at neutral environment.

Donor NBO (i)	Acceptor NBO (j)	E ²	Donor NBO (i)	Acceptor NBO (j)	E ²	
Pheny	Ring 1 (atoms 1-11)		Imidazole ring (atoms 12,13,25,51-53)			
BD (2) C 5 - C 7	BD*(2) C 9 - C 11	64.34	BD (1) C 13 - N 53	BD*(1) C 14 - C 15	56.72	
BD (1) C 5 - H 6	BD*(2)C5-C7	53.66	BD (1) C 13 - N 53	BD*(1) C 15 - H 16	23.53	
BD (1) C 7 - C 9	BD*(2) C 5 - C 7	43.01	BD (1) C 13 - C 14	BD*(1) C 14 - C 15	21.98	
BD(1)C5-H6	BD*(1)C 7-H 8	32.52	BD (1) C 25 - C 26	BD*(1) C 26 - C 27	11.00	
BD (2) C 9 - C 11	BD*(2)C 5-C 7	27.05	BD(1)C 12-N 51	BD*(1) C 13 - C 14	4.07	
BD (2) C 5 - C 7	BD*(2) C 9 - C 11	22.72	BD(1)C 12-N 51	BD*(1) C 47 - H 48	4.05	
BD(2)C1-C3	BD*(2)C 9-C 11	20.68	Phen	ylacrylnitrile moiety	_	
BD(1)C5-H6	BD*(1)C 3-H 4	22.34	BD (1) C 43 - C 45	BD*(1) C 47 - H 48	188.44	
BD(2)C1-C3	BD*(2)C5-C7	22.30	BD (1) C 47 - C 49	BD*(1) C 47 - H 48	141.89	
Phenyl	Ring 2 (atoms 14-21)		BD (2) C 36 - C 38	BD*(2) C 31 - C 32	87.93	
BD (1) C 21 - H 22	BD*(1) C 14 - C 15	108.26	BD (1) C 40 - C 49	BD*(1) C 47 - H 48	35.39	
BD (1) C 21 - H 22	BD*(1) C 21 - C 23	95.71	BD (1) C 39 - N 54	BD*(1) C 45 - H 46	25.60	
BD (1) C 21 - H 22	BD*(2) C 21 - C 23	89.40	BD (3) C 39 - N 54	BD*(2) C 31 - C 32	25.58	
BD (1) C 21 - H 22	BD*(1)C 15-H 16	56.20	BD (1) C 39 - N 54	BD*(3) C 39 - N 54	15.01	
BD (1) C 21 - H 22	BD*(1) C 17 - C 19	47.61				
BD (1) C 14 - C 23	BD*(2) C 27 - C 29	30.98	Lone pair e	electrons in nitrogen atoms		
BD (1) C 19 - C 21	BD*(1) C 21 - C 23	31.41	LP(1)N 51	LP*(1) C 25	130.25	
BD (1) C 19 - C 21	BD*(2) C 21 - C 23	15.48	LP(1)N 51	LP*(1) C 25	129.56	
BD (1) C 19 - C 21	BD*(1) C 26 - C 27	14.13	LP(1)N 53	D*(2) C 31 - C 32	43.11	
Phenyl	Ring 3 (atoms 26-35)		LP(1)N 51	BD*(2)C 12-C 13	28.32	
BD (2) C 27 - C 29	BD*(2)C 31-C 32	173.41	LP(1)N 53	BD*(2)C 12-C 13	26.46	
BD (2) C 26 - C 34	BD*(2) C 31 - C 32	83.29				
BD (2) C 31 - C 32	BD*(2) C 26 - C 34	41.35				
BD (2) C 27 - C 29	BD*(2) C 26 - C 34	29.84				
BD (1) C 25 - C 26	BD*(2) C 27 - C 29	23.24				
BD (2) C 31 - C 32	D*(2) C 36 - C 38	15.26				
BD (1) C 26 - C 34	BD*(1) C 26 - C 27	8.70				

Table S11 The selected second order perturbation energy (E^2 in kcal mol⁻¹) for compound 2 at cation environment.

Donor NBO (i) Acceptor NBO (j)		E ²	Donor NBO (i)	Acceptor NBO (j)	E ²	
Phenyl Ring 1 (atoms 1-1	1)					
BD (2) C 7 - C 9	BD*(2) C 1 - C 11	24.61	Im and Ph ring 1-2	mring3:12,13,25,51-53		
BD (2) C 1 - C 11	BD*(2) C 3 - C 5	23.39	BD (2) C 39 - N 53	BD*(3) C 39 – N53	522.44	
BD (2) C 3 - C 5	BD*(2) C 7 - C 9	20.86	BD (1) C 41 - H 42	BD*(3) C 39 - N 53	322.59	
BD (2) C 3 - C 5	BD*(2) C 1 - C 11	20.72	BD (3) C 39 - N 53	BD*(1) C 43 - C 45	173.45	
BD (2) C 14 - C 23	BD*(2) C 19 - C 21	23.68	BD (1) C 40 - C 41	BD*(3) C 39 - N 53	168.06	
BD (2) C 15 - C 17	BD*(2) C 19 - C 21	19.87	BD (2) C 39 - N 53	BD*(1) C 40 - C 41	145.19	
BD (2) C 19 - C 21	BD*(2) C 15 - C 17	19.56	BD (2) C 39 - N 53	BD*(2) C 39 - N 53	134.48	
BD (2) C 7 - C 9	BD*(2) C 3 - C 5	19.51	BD (1) C 41 - H 42	BD*(1) C 40 - C 41	113.22	
BD (2) C 1 - C 11	BD*(2) C 7 - C 9	18.25	BD (1) C 41 - H 42	BD*(2) C 39 - N 53	81.53	
BD (2) C 19 - C 21	BD*(2) C 14 - C 23	17.97	BD (1) C 40 - C 41	BD*(1) C 40 - C 41	47.62	
			BD (1) C 41 - C 43	BD*(3) C 39 - N 53	43.59	
Phenyl	Ring 3 (atoms 26-35)		BD (1) C 39 - N 53	BD*(2) C 47 - C 49	37.17	
BD (2) C 26 - C 34	BD*(2) C 31 - C 32	28.82	BD (1) C 38 - C 40	BD*(2) C 39 - N 53	35.77	
BD (2) C 26 - C 34	BD*(2) C 25 - N 51	19.06	BD (1) C 31 - C 36	BD*(3) C 39 - N 53	33.58	
BD (2) C 27 - C 29	BD*(2) C 26 - C 34	18.53	BD (1) C 40 - C 41	BD*(2) C 39 - N 53	33.42	
BD (2) C 27 - C 29	BD*(2) C 31 - C 32	16.29	BD (1) C 38 - C 39	BD*(3) C 39 - N 53	30.16	
BD (1) C 27 - C 29	BD*(1) C 40 - C 41	15.63	BD (1) C 41 - C 43	BD*(1) C 40 - C 41	28.41	
BD (2) C 26 - C 34	BD*(2) C 27 - C 29	15.55	BD (3) C 39 - N 53	BD*(1) C 45 - H 46	26.41	
Imidazole ring (atoms 12	2,13,25,51-53)		BD (2) C 43 - C 45	BD*(2) C 40 - C 41	18.92	
BD (2) C 25 - N 51	LP (2) N 52	34.86	BD (2) C 47 - C 49	BD*(2) C 40 - C 41	18.98	
BD (2) C 25 - N 51	BD*(2) C 12 - C 13	24.07				
BD (2) C 14 - C 23	BD*(2) C 15 - C 17	19.32	Lone pair electrons in nitrogen atoms			
BD (2) C 12 - C 13	BD*(2) C 25 - N 51	15.56	LP (2) N 52	BD*(2) C 12 - C 13	63.88	
BD (2) C 25 - N 51	BD*(2) C 26 - C 34	14.50	LP (2) N 52	BD*(2) C 25 - N 51	83.33	
BD (2) C 12 - C 13	BD*(2) C 1 - C 11	14.17				
BD (2) C 12 - C 13	BD*(2) C 14 - C 23	12.74				
BD (2) C 14 - C 23	BD*(2) C 12 - C 13	10.53				

Table S12 The selected second order perturbation energy (E^2 in kcal mol⁻¹) for title compound at anion environment.

SCXRD

Crystallographic data (excluding structure factors) reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1888014 Copies of available material can be obtained, free of charge, on application to the CCDC, 12 Union Road. Cambridge CB2 IEZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

Reference

- 1 S. Dhami, A. J. De Mello, G. Rumbles, S. M. Bishop, D. Phillips and A. Beeby, *Photochem. Photobiol.*, 2018, **61**, 341–346.
- 2 J. L. Bredas, R. Silbey, D. S. Boudreaux and R. R. Chance, J. Am. Chem. Soc., 1983, 105, 6555–6559.
- 3 M. M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts and H. C. Swart, *Opt. Mater. (Amst).*, 2015, **42**, 193–198.
- 4 R. C. Clark and J. S. Reid, Acta Crystallogr. Sect. A, 1995, 51, 887–897.