## **Supporting Information**

Poly(norepinephrine)-coated FeOOH nanoparticles as carrier of artemisinin for cancer photothermal-chemical combination therapy<sup>†</sup>

Zi He,<sup>‡</sup><sup>a</sup> Huiling Su,<sup>‡</sup><sup>a</sup> Yuqing Shen,<sup>b</sup> Wei Shi,<sup>\*</sup><sup>a</sup> Xin Liu,<sup>a</sup> Yang Liu,<sup>a</sup> Fuhui Zhang,<sup>b</sup> Yansheng Zhang,<sup>b</sup> Yanan Sun<sup>a</sup> and Dongtao Ge<sup>\*</sup><sup>a</sup>

<sup>a</sup> Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China

<sup>b</sup> Xiamen Maternal and Child Health Hospital, Xiamen 361003, China

\* Corresponding author. Tel/fax: +86 592 2188502.

E-mail addresses: shiwei@xmu.edu.cn (W. Shi), gedt@xmu.edu.cn (D.T. Ge)

† Electronic supplementary information (ESI) available. See DOI:

<sup>‡</sup> These authors contributed equally to this work.



Figure S1 X-ray diffraction pattern of FeOOH



Figure S2 NIR adsorption spectra of FeOOH@PNE with different concentrations.



Figure S3 FT-IR spectra of standard Art, FeOOH@PNE and FeOOH@PNE-Art nanoparticles.



FeOOH@PNE



**Figure S5** The accumulated release of Art under laser irradiation (808 nm, 10 min) of different power density at pH5.0.



Figure S6 Fluorescence spectra of Rhodamine B (RhB) labeled FeOOH@PNE nanoparticles.



Figure S7 Cell viabilities of 4T1 and L929 cells treated with different concentrations of FeOOH@PNE nanoparticles.