Supporting Information

Development of specific L-methionine sensors by FRET-based

protein engineering

Wooseok Ko, Hyun Soo Lee*

Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea

Table of Contents

Figure S1	 2
Figure S2	 3
Figure S3	 4
Figure S3	 5

Figure S1. Schematic representation of the designed sensor protein. YFP is fused to the N-terminus of MetQ, and CouA is incorporated into the position where the greatest change in FRET ratio is produced upon L-Met binding.

Figure S2. SDS-PAGE analyses of the purified YFP-MetQ mutant proteins containing CouA at the indicated position. The proteins were expressed in the presence of CouA (1 mM) and the corresponding tRNA/CouRS pair and purified using Ni-NTA affinity chromatography.

Figure S3. Crystal structure of the ligand binding site of MetQ complexed with L-Met (PDB 4YAH). The residues, Y69, H88 and N141, were mutated as shown in the table to improve the binding specificity of MetQ.

Figure S4. SDS-PAGE analyses of the purified YFP-MetQ-R189CouA mutants with the indicated mutations. The proteins were expressed in the presence of CouA (1 mM) and the corresponding tRNA/CouRS pair and purified using Ni-NTA affinity chromatography.