The Role of Hollow Magnetic Nanoparticles in Drug Delivery

Ghodsi Mohammadi Ziarani*,^a, Masoumeh Malmir^a, Negar Lashgari^a, Alireza Badiei^b

^a Department of Chemistry, Alzahra University, Vanak Square, P.O. Box 1993893973, Tehran, Iran. E-mail:

gmziarani@hotmail.com; gmohammadi@alzahra.ac.ir

^b School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran

Figure S1. The structure of IBU-PEG-coated Fe_2O_3 (a) and IBU-PEG-coated Fe_3O_4 (b) ¹

Figure S2. Scheme of the synthetic procedure for the preparation of hollow magnetic mesoporous spheres ²

Figure S4. Fabrication of the hollow magnetic-MOF composite through the interfacial growth approach induced by Fe₃O₄

stabilized Pickering emulsion ³

Figure S5. Drug release of ibuprofen from the porous MHSNs showing slow release ⁴

Fe₃O₄-SiO₂-NHFA ⁵

Figure S7. Ibuprofen released from Fe₃O₄–SiO₂–NH₂ and Fe₃O₄–SiO₂–NHFA microspheres curves ⁵

Figure S8. The schematic preparation process of magnetic mesoporous silica microspheres MZHM-MSS-NH₂ and MZHM-

MSS-NHFA⁶

Figure S9. Cumulative ibuprofen release from MZHM-MSS-NH₂ and MZHM-MSS-NHFA in PBS solution at room temperature

6

Figure S11. In vitro cumulative drug release of cefradine from the Fe₃O₄/PE₅/CdTe/PE₁ in release media of different pH

values 7

Figure S12. The cumulative vancomycin release ratio from the control HAp nanoparticles (S0) and HAp hollow microspheres

(S1), and the fabricated magnetic HAp hollow microspheres (S2–S4) in PBS at pH = 7.40^{8}

Figure S13. The schematic formation mechanism of the CM-mediated, microwave-assisted HMSPs ⁹

Figure S 14. Drug release profiles of DOX from HMSPs as a function of time at pH 4.0, 5.0 and 7.4 at 37 °C ⁹

Figure S 15. The Schematic illustration of the mechanism of formation of the poly(MAA/EGDMA)/Fe₃O₄ composite

microcapsules with hollow structure ¹⁰

Figure S16. Doxorubicin cumulative release from the hollow poly(MAA/EGDMA)/Fe₃O₄ composite microcapsules versus incubation time. Release profiles at different pH values (a) pH = 2, (b) pH = 4 and (c) pH = 7. 10

Figure S17. Illustration of the synthetic procedure of FeOOH/HMSS(DOX)-PEG ¹¹

Figure S18. Schematic procedure for preparation and folate conjugation of Fe₃O₄@SiO₂ hollow mesoporous spheres ¹²

Figure S19. DOX release from Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂-FA spheres in PBS at 37 °C (inset, DOX loading capacity in

 $Fe_3O_4@SiO_2$ and $Fe_3O_4@SiO_2$ -FA spheres) ¹²

Figure S20. Schematic illustration for the fabrication of the PNIPAM/Fe₃O₄–ZnS hybrid hollow spheres ¹³

Figure S21. (a) The release behaviour of DOX-loaded PNIPAM/Fe₃O₄–ZnS hollow spheres in PBS at different temperatures

and (b) Schematic diagram for the DOX releasing process ¹³

Figure S22. The procedure for the synthesis of the 1D magnetic Fe₃O₄/P(MBA-co-MAA)/Ag and y-Fe₂O₃@mSiO₂ nanochains

14

Figure S23. Drug released kinetic curve of γ -Fe₂O₃@mSiO₂ nanochains ¹⁴

Figure S24. The effects of initial DXR concentrations on the drug loading capacity and encapsulation efficiency of magnetite

and tumour dual-targeting hollow P(MBAAm-coMAA) microspheres. ¹⁵

Figure S25. CDDP release from (a) HMS, (b) HMS-CMCS spheres in PBS at 37°C ¹⁶

Figure S26. The synthesis procedure of hollow Fe₃O₄/SiO₂@PEG–PLA $^{\rm 17}$

Figure S27. CDDP release from (a) HMS; (b) HMS@PEG–PLA spheres in PBS at 37 °C ¹⁷

Figure S28. Schematic illustration of simultaneous surfactant exchange and cisplatin loading into a PHNP and

functionalization of this PHNP with Herceptin. ¹⁸

Figure S29. Synthesis of fluorescent magnetic nanoparticles conjugated with CPT and folic acid ¹⁹

Figure S30. (a) Cumulative CPT releases from Fe₃O₄@m-SiO₂–CD–FA–CPT, (b) in vitrocell viability of HeLa with asprepared Fe₃O₄@m-SiO₂–CD, Fe₃O₄@m-SiO₂–CD–CPT and Fe₃O₄@m-SiO₂–CD–FA–CPT nanoparticles. ¹⁹

Figure S31. Schematic illustration of the drug loading and release of the hollow dual-responsive microspheres ²⁰

Figure S32. The release profile of the TSCHMSs at 35 and 50°C²⁰

Notes and references

- 1. S. W. Cao and Y. J. Zhu, J. Phys. Chem. C, 2008, 112, 12149-12156.
- 2. L. Y. Xia, M. Q. Zhang, C. Yuan and M. Z. Rong, J. Mater. Chem., 2011, 21, 9020-9026.
- 3. X. Zhu, S. Zhang, L. Zhang, H. Liu and J. Hu, *RSC Adv.*, 2016, **6**, 58511-58515.
- 4. J. Zhou, W. Wu, D. Caruntu, M. H. Yu, A. Martin, J. F. Chen, C. J. O'Connor and W. L. Zhou, *J. Phys. Chem. C*, 2007, **111**, 17473-17477.
- 5. Y. Yang, X. Guo, K. Wei, L. Wang, D. Yang, L. Lai, M. Cheng and Q. Liu, J. Nanopart. Res., 2014, 16, 2210-2214.
- 6. D. Yang, K. Wei, Q. Liu, Y. Yang, X. Guo, H. Rong, M. L. Cheng and G. Wang, *Mater. Sci. Eng. C*, 2013, **33**, 2879-2884.
- 7. L. Li, H. Li, D. Chen, H. Liu, F. Tang, Y. Zhang, J. Ren and Y. Li, *J. Nanosci. Nanotechnol.*, 2009, **9**, 2540-2545.
- 8. K. Lin, L. Chen, P. Liu, Z. Zou, M. Zhang, Y. Shen, Y. Qiao, X. Liu and J. Chang, *CrystEngComm*, 2013, **15**, 2999-3008.
- 9. S. Xu, B. Yin, J. Guo and C. Wang, *J. Mater. Chem. B*, 2013, **1**, 4079-4087.
- 10. S.-J. Park, H.-S. Lim, Y. M. Lee and K. D. Suh, *RSC Adv.*, 2015, **5**, 10081-10088.
- 11. Y.-K. Peng, Y.-J. Tseng, C.-L. Liu, S.-W. Chou, Y.-W. Chen, S. C. Edman Tsang and P.-T. Chou, *Nanoscale*, 2015, **7**, 2676-2687.
- 12. Y. Zhu, Y. Fang and S. Kaskel, J. Phys. Chem. C, 2010, 114, 16382-16388.
- 13. G. Liu, D. Hu, M. Chen, C. Wang and L. Wu, J. Colloid. Interface Sci., 2013, 397, 73-79.
- 14. W. Zhang, X. Si, B. Liu, G. Bian, Y. Qi, X. Yang and C. Li, J. Colloid. Interface Sci., 2015, 456, 145-154.
- 15. X. Yang, L. Chen, B. Han, X. Yang and H. Duan, *Polymer*, 2010, **51**, 2533-2539.
- 16. M. Lei, T. Chao and Z. Lei, J. Nanopart. Res., 2014, **16**, 2410-2416.
- 17. H. Deng and Z. Lei, *Compos. Part B*, 2013, **54**, 194-199.
- 18. K. Cheng, S. Peng, C. Xu and S. Sun, J. Am. Chem. Soc., 2009, **131**, 10637–10644.
- 19. S. Sahu, N. Sinha, S. K. Bhutia, M. Majhi and S. Mohapatra, J. Mater. Chem. B, 2014, 2, 3799-3808.

20. L. Chen, H. Zhang, L. Li, Y. Yang, X. Liu and B. Xu, *Appl. Polym. Sci.*, 2015, **132**, 42617-42627.