Electronic Supplementary Information (ESI) for

Methyl-restricted fluorescent rotor rotation on the stator produces high-efficiency fluorescence emission: A new strategy to achieve aggregation-induced emission

Haicheng Yang, ${ }^{a}$ Xinyue Zhou, ${ }^{a}$ Tianqi Hui, ${ }^{a}$ Yingying Han, ${ }^{a}$ Xiaonan Jiang, ${ }^{a}$ and Jie Yan ${ }^{*}{ }^{a}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850\#, Dalian City, 116029, PR China. E-mail: yhc1994@live.cn

Table of Contents

Fig. S1. XRD diffractogram of as-prepared powder of TFTB and TFB.
Fig. S2. PL spectra of TFB in water/THF mixtures with different water fraction. S2
Fig. S3. Molecular orbital amplitude plots of HOMO and LUMO of TFTB and TFB.

Fig. S4. Absorption spectra of TFTB and TFB in THF solutions.
Fig. S5. Calculated HOMO and LUMO energy levels of TFTB and TFB.S4
Fig. S6. DSC curves (second heating scan) of TFTB and TFB. S4
Characterization S5

Figures

Fig. S1. XRD diffractogram of as-prepared powder of (A) TFTB and (B) TFB.

Fig. S2. PL spectra of TFB in THF/water mixtures with different water fraction $\left(f_{\mathrm{w}}\right)$.

Fig. S3. Molecular orbital amplitude plots of HOMO and LUMO of TFTB and TFB calculated using B3LYP/6-31G(d) basis set.

Fig. S4. Absorption spectra of TFTB and TFB in THF solutions.

Fig. S5. Calculated HOMO and LUMO energy levels of TFTB and TFB using B3LYP/6-31G(d) basis set.

Fig. S6. DSC curves (second heating scan) of TFTB and TFB recorded under nitrogen $10 \mathrm{~mL} \mathrm{~min}^{-1}$ at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$.
${ }^{1} \mathrm{H}$ spectrum of $\mathbf{1}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ spectrum of 1 in CDCl_{3}.

${ }^{1} \mathbf{H}$ spectrum of $\mathbf{2}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ spectrum of 2 in CDCl_{3}.

${ }^{1} \mathrm{H}$ spectrum of 3 in CDCl_{3}.

${ }^{13} \mathrm{C}$ spectrum of 3 in CDCl_{3}.

${ }^{1} \mathrm{H}$ spectrum of $4 \mathrm{in} \mathrm{CDCl}_{3}$.

${ }^{13} \mathrm{C}$ spectrum of 4 in CDCl_{3}.

$\begin{array}{llllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20\end{array}$

${ }^{1} \mathrm{H}$ spectrum of 5 in CDCl_{3}.

${ }^{13} \mathrm{C}$ spectrum of 5 in CDCl_{3}.

