Supporting information

Carbon Nitride Supported Ni_{0.5}Co_{0.5}O Nanoparticles with Strong Interfacial Interaction to Enhance The Hydrolysis of Ammonia Borane

Yunpeng Shang^a, Kun Feng^a, Yu Wang^{b*}, Xuhui Sun^a, and Jun Zhong^{a*}

Figure S1: (a) Hydrogen evolution curves of the hydrolysis of AB aqueous solution catalyzed by $Ni_{0.5}Co_{0.5}O$ -NCN, $Cu_{0.5}Co_{0.5}O$ -NCN, $Ni_{0.5}Cu_{0.5}O$ -NCN, CoO-NCN NiO-NCN and CuO-NCN. (b) Comparison of the hydrogen evolution curves catalyzed by $Ni_{0.5}Co_{0.5}O$ -CN and $Ni_{0.5}Co_{0.5}O$ -NCN.

Figure S2: Hydrogen-generating rate as a function of temperature in the hydrolysis of AB catalyzed by $Ni_{0.5}Co_{0.5}O$ -NCN. Since at a high temperature the reaction will be finished quickly, we have used less $Ni_{0.5}Co_{0.5}O$ -NCN (2.5 mg) in this reaction. Inset: Arrhenius plot of ln(TOF) versus 1/*T*. The activation energy is 43.18 kJ/mol.

Figure S3: (a) Stoichiometric hydrogen evolution in aqueous solution at a fixed amount of AB with various $Ni_{0.5}Co_{0.5}O$ -NCN/AB molar ratios at 298 K; (c) Relationship between hydrogen-generating rate and AB concentration at a fixed amount of $Ni_{0.5}Co_{0.5}O$ -NCN in aqueous solution at 298 K; (b) and (d): Logarithmic plots of rate versus [$Ni_{0.5}Co_{0.5}O$ -NCN] and [AB], respectively.

Figure S4: The particle size distribution of $Ni_{0.5}Co_{0.5}O$ -NCN with an average size of 2.8 nm.

Figure S5: XRD spectra of CN, NCN and Ni_{0.5}Co_{0.5}O-NCN.

Figure S6: FTIR spectra of CN and NCN.

Figure S7: XPS spectra of CN, NCN and Ni_{0.5}Co_{0.5}O-NCN at C 1s (a), N 1s (b), Ni 2p (c) and Co 2p (d) edges, respectively.

Figure S8: XAS spectra of $Ni_{0.5}Co_{0.5}O$ -NCN and the reference samples at Ni *L*-edge (a) and Co *L*-edge (b), respectively.

Figure S9: XAS spectra of $Ni_{0.5}Co_{0.5}O$ -NCN before and after the hydrolysis reaction at

Co K-edge (a) and Ni K-edge (b), respectively.

Figure S10: TEM images of the $Ni_{0.5}Co_{0.5}O$ -NCN samples after the first cycle (a) and the 6th cycle (b).

Samples	Ni-loading/wt%	Co-loading/wt%	TOF (H ₂) mol/(Cat- M)mol·min
Ni _{0.8} Co _{0.2} O-NCN	17.1	4.3	42.9
Ni _{0.6} Co _{0.4} O-NCN	12.2	8.4	50.3
Ni _{0.5} Co _{0.5} O-NCN	11.6	10.5	76.1
Ni _{0.4} Co _{0.6} O-NCN	8.7	12.8	46.6
Ni _{0.2} Co _{0.8} O-NCN	3.9	16.2	35.2
NiO-NCN	19.1	-	5.5
CoO-NCN	-	15.8	13.3
NCN	-	-	0

Table S1. Ni and Co contents and the TOF values of various $Ni_xCo_{1-x}O$ -NCN samples.

Catalyst	TOF (H ₂) mol/(Cat- M)mol·min	Solution	T (°C)	Ref.
Ni _{0.5} Co _{0.5} O-NCN	76.1	Water	25	This work
Cu _{0.72} Co _{0.18} Mo _{0.1}	119.0	NaOH	25	1
Co/MIL-101(Cr)-NH ₂	117.7(light)	Water	25	2
Ni _{0.3} Co _{1.3} P/GO	109.4	NaOH	25	3
Co-C ₃ N ₄ -580	93.8(light)	Water	25	4
Ni/ZIF-8	85.7	NaOH	25	5
Cu _{0.5} Co _{0.5} O-rGO	81.7	Water	25	6
CuCo/g-C ₃ N ₄	75.1(light)	Water	25	7
СоР	72.2	NaOH	25	8
Cu _{0.8} Co _{0.2} O-GO	70.0	Water	25	9
Ni0.9Mo0.1/graphene	66.7	Water	25	10
CuO-NiO	60.0	Water	25	11
Cu _{0.5} Ni _{0.5} /CMK-1	54.8	Water	25	12
CuCo/MIL-101-1-U	51.7	Water	25	13
Co NPs (in-situ)	49.8	Water	25	14
Ni NPs@3D-(N)GFs	41.7	Water	25	15
Ni ₂ P	40.4	Water	25	16
Cu NPs@SCF	40.0	Water	25	17
PEI-GO/Co	39.9	Water	25	18
Ni@MCS-30	30.7	Water	25	19
Cu _{0.49} Co _{0.51} /C	28.7	Water	25	20
Ni NPs/CNT	23.5	Water	25	21
Cu _{0.1} @Co _{0.45} Ni _{0.45} /graphene	15.46	Water	25	22
Ni NPs/C	8.8	Water	25	23

Cu/rGO	3.6	Water	25	24

 Table S2:
 Activities of various non-noble metal based catalysts for the hydrolysis of

AB.

References listed in Table S2:

- 1. Q. L. Yao, K. Yang, X. L. Hong, X. S. Chen and Z. H. Lu, *Catal. Sci. Technol.*, 2018, **8**, 870-877.
- 2. J. Song, X. Gu, J. Cheng, N. Fan, H. Zhang and H. Su, *Appl. Catal. B: Environ.*, 2018, **225**, 424-432.
- C. C. Hou, Q. Li, C. J. Wang, C. Y. Peng, Q. Q. Chen, H. F. Ye, W. F. Fu, C. M. Che, N. López and Y. Chen, *Energy Environ. Sci.*, 2017, 10, 1770-1776.
- 4. H. Zhang, X. J. Gu, J. Song, N. Fan and H. Q. Su, *ACS Appl. Mater. Inter.*, 2017, **9**, 32767-32774.
- 5. C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz and D. Astruc, *J. Am. Chem. Soc.*, 2017, **139**, 11610-11615.
- 6. H. Zheng, K. Feng, Y. Shang, Z. Kang, X. Sun and J. Zhong, *Inorg. Chem. Front.*, 2018, **5**, 1180-1187.
- H. Zhang, X. Gu, P. Liu, J. Song, J. Cheng and H. Su, J. Mater. Chem. A, 2017, 5, 2288-2296.
- Z. C. Fu, Y. Xu, S. L. Chan, W. W. Wang, F. Li, F. Liang, Y. Chen, Z. S. Lin, W. F. Fu and C. M. Che, *Chem. Commun.*, 2017, 53, 705-708.
- 9. K. Feng, J. Zhong, B. H. Zhao, H. Zhang, L. Xu, X. H. Sun and S. T. Lee, *Angew. Chem. Int. Ed.*, 2016, **55**, 11950-11954.
- 10. Q. L. Yao, Z. H. Lu, W. Huang, X. S. Chen and J. Zhu, J. Mater. Chem. A, 2016, 4, 8579-8583.
- 11. H. Yen and F. Kleitz, J. Mater. Chem. A, 2013, 1, 14790-14796.
- 12. H. Yen, Y. Seo, S. Kaliaguine and F. Kleitz, *ACS Catal.*, 2015, **5**, 5505-5511.
- 13. P. Liu, X. Gu, K. Kang, H. Zhang, J. Cheng and H. Su, *ACS Appl. Mater. Interfaces*, 2017, **9**, 10759–10767.
- 14. J. M. Yan, X. B. Zhang, H. Shioyama and Q. Xu, *J. Power Sources*, 2010, **195**, 1091-1094.
- 15. M. Mahyari and A. Shaabani, J. Mater. Chem. A, 2014, 2, 16652-16659.
- 16. C. Y. Peng, L. Kang, S. Cao, Y. Chen, Z. S. Lin and W. F. Fu, *Angew. Chem. Int. Ed.*, 2015, **127**, 15951-15955.
- 17. M. Kaya, M. Zahmakiran, S. Özkar and M. Volkan, ACS Appl. Mater. Interfaces, 2012, 4, 3866-3873.
- 18. J. T. Hu, Z. X. Chen, M. X. Li, X. H. Zhou and H. B. Lu, *ACS Appl. Mater*. *Interfaces*, 2014, **6**, 13191-13200.
- 19. P. Z. Li, A. Aijaz and Q. Xu, Angew. Chem. Int. Ed., 2012, 51, 6753-6756.

- 20. A. Bulut, M. Yurderi, İ. E. Ertas, M. Celebi, M. Kaya and M. Zahmakiran, *Appl. Catal. B: Environ.*, 2016, **180**, 121-129.
- 21. G. Q. Zhao, J. Zhong, J. Wang, T. K. Sham, X. H. Sun and S. T. Lee, *Nanoscale*, 2015, **7**, 9715-9722.
- 22. X. Y. Meng, L. Yang, N. Cao, C. Du, K. Hu, J. Su, W. Luo and G. Z. Cheng, *ChemPlusChem*, 2014, **79**, 325-332.
- 23. O. Metin, V. Mazumder, S. Özkar and S. H. Sun, J. Am. Chem. Soc., 2010, **132**, 1468-1469.
- 24. Y. W. Yang, Z. H. Lu, Y. J. Hu, Z. J. Zhang, W. M. Shi, X. S. Chen and T. T. Wang, *RSC Adv.*, 2014, **4**, 13749-13752.

Cycles	TOF (H ₂) mol/(Cat- M)mol·min	Catalytic Efficiency
1 st	76.1	100%
2 nd	73.9	97.1%
3 rd	71.5	94.0%
4 th	69.0	90.7%
5 th	66.3	87.1 %
6 th	63.3	83.2%

Table S3. TOF values and the catalytic efficiencies of $Ni_{0.5}Co_{0.5}O$ -NCN in different

cycles during the stability test.