Supporting information

Construction of a luminescent sensor based on lanthanide complex for the highly efficient detection of methyl parathion

Xuan Hu ^a, Fengyi Wang ^a, Qianqian Peng ^a, Jing Hu ^a, Huaqiao Peng^c, Lin Li^c Baozhan Zheng ^{a,b*}, Juan Du ^{a,b*}, and Dan Xiao ^{a,b}

^a College of Chemistry, Sichuan University, Chengdu 610064, China.

^b Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China

^c The Second Research Institute of Civil Aviation Administration of China(CAAC), Chengdu 610041, China

^{*} Corresponding authors.

E-mail address: dujuanchem@scu.edu.cn (J. Du); zhengbaozhan@scu.edu.cn (B. Zheng).

Fig.S2 ¹³CNMR of Compound1

Fig.S7 MALDI-TOF MS data of the Eu-MP

Fig.S8 The relationship between Eu^{3+} concentration and the fluorescence intensity of HL- Eu^{3+}

Fig.S9 The time-dependent fluorescence intensity of HL-Eu³⁺

Fig. S10 Job's plot of the complex formed by HL and Eu^{3+} at an invariant total concentration of 0.1 mM, where the intensity at 617 nm was plotted against the mole fraction of Eu^{3+}

Fig.S12 Time-dependent fluorescence response of HL-Eu $^{3+}$ to MP

Fig.S13 the fluorescence intensities of HL-Eu³⁺ at 617 nm were measured the presence of different metal ions (100 μ M) and anions (100 μ M). A: (a) Mg²⁺, (b) Ca²⁺, (c) Hg²⁺, (d) Na⁺, (e) Fe³⁺, (f) Pb²⁺, (g) Cd²⁺, (h) Zn²⁺, (i) Ba²⁺, (j) PO₄³⁻, (k) Ac⁻, (l) Br⁻, (m) HPO₄²⁻, (n) SO₄²⁻, (o) F⁻, (p) H₂PO₄⁻, (q) NO₃⁻⁻, (r) MP. B: The fluorescence intensity of HL-Eu³⁺ to 20 μ M MP in the presence of different metal ions (100 μ M) and anions (100 μ M). (a) Mg²⁺, (b) Ca²⁺, (c) Hg²⁺, (d) Na⁺, (e) Fe³⁺, (f) Pb²⁺, (g) Cd²⁺, (h) Zn²⁺, (i) Ba²⁺, (j) PO₄³⁻, (k) Ac⁻ (l) Br⁻, (m) HPO₄²⁻, (n) SO₄²⁻, (o) F⁻, (p) H₂PO₄⁻, (r) MP.

Fig.S14 the absorption spectra of HL-Eu³⁺ with the addition of different OPs, including carbaryl, phoxim, triethyl phosphate, dimethoate and MP (20 μ M)

Fluorescent probes	Linear range	Detection limit	Reference
CdTe QDs/CTAB	25-3000 ng·mL ⁻¹	18.0 ng∙mL ⁻¹	[1]
AChE/Silica sol-gel flim/CPE	0.1-0.5 ppb	0.08 ppb	[2]
Try-CDs	10 ⁻¹⁰ -10 ⁻⁴ M	$4.8\!\times\!\!10^{11}M$	[3]
Methyl parathion hydrolase biosens	0.2-100 ppb	0.07 ppb	[4]
Fe ₃ O ₄ imprinted polymers	15-2500 ng/g	5.2 ng/g	[5]
screen printed carbon electrode	2.0-80 µM	500 nM	[6]
HPLC	1.03-75.99 μM	0.38 µM	[7]
Optical microbial biosensor	4-80 μM	0.3 µM	[8]
Lipase@ZIF-8 nanoparticles GCE	0.1-38 μΜ	0.28 µM	[9]
NCDs-MPH system	2.38-73.78 μM	0.338 μΜ	[10]
HL-Eu ³⁺	0.75-20 μΜ	95 nM	This work

Table S1 Comparison of the present method with the literature for the determination of MP

References:

[1] X. Yan, H. Li, X. Wang and X. Su, Talanta, 2015, 131, 88-94.

[2] P. Raghu, B. E. Kumara Swamy, T. Madhusudana Reddy, B. N. Chandrashekar and K. Reddaiah, Bioelectro. Chemistry,

2012, 83, 19-24.

- [3] J. Hou, J. Dong, H. Zhu, X. Teng, S. Ai and M. Mang, Biosens. Bioelectron., 2015, 68, 20-26.
- [4] G. Liu, W. Guo and Z. Yin, *Biosens. Bioelectron.*, 2014, 53, 440-446.
- [5] S. Xu, C. Guo, Y. Li, Z. Yu, C. Wei and Y. Tang, J Hazard. Mater, 2014, 264, 34-41.
- [6] J. Kumar and S. F. D'Souza, Biosens. Bioelectron., 2011, 26, 4289-4293.
- [7] G. Huang, J. Ouyang, W. R. G. Baeyens, Y. Yang and C. Tao, Anal. Chim. Acta, 2002, 474, 21-29.
- [8] J. Kumar, S. K. Jha and S. F. D'Souza, *Biosens. Bioelectron.*, 2006, **21**, 2100-2105.
- [9] B. Ma, L.-Z. Cheong, X. Weng, C.-P. Tan, C. Shen, *Electrochim. Acta*, 2018, 283, 509-516.
- [10] W. Song, H.-J. Zhang, Y.-H. Liu, C.-L. Ren, H.-L. Chen, Chin. Chem. Lett. 2017, 28, 1675–1680.