# **Supporting Information**

## Spinel oxide CoFe<sub>2</sub>O<sub>4</sub> grown on Ni foam as efficient electrocatalyst

### for oxygen evolution reaction

Shasha Zhu,<sup>a</sup> Jinglei Lei,<sup>\*a</sup> Yonghan Qin,<sup>a</sup> Lina Zhang,<sup>a</sup> and Lijun Lu<sup>b</sup>

<sup>a</sup>College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 40

0044, China

<sup>b</sup>College of Computer Science and Technolog, Chongqing University of Posts and Telec

ommunications, Chonqing 400065, China

\*Corresponding author: leijlei@163.com

#### S1. Electrochemical Measurements.

The potential was calibrated with respect to reversible hydrogen electrode (RHE).  $E_{RHE}=E_{Hg/HgO} + 0.923 V$  in 1 M KOH. All the potentials mentioned in our paper are against RHE unless otherwise specified. The overpotential ( $\eta$ ) was calculated according to the following formula:  $\eta(V)=E_{RHE}-1.23V$ .

#### S2. Estimation of Effective Electrochemical Active Surface Area (ESCA).

Electrochemical capacitance is determined using cyclic voltammetry (CV) measurements. The potential range is typically a 0.1V window taken from open-circuit potential (OCP) of the system. CV measurements are conducted by sweeping the potential across the non-Faradaic region with different scan rates: from 2 mV s<sup>-1</sup> to 10 mV s<sup>-1</sup>. All measured current in this non-Faradaic potential region is assumed to be ascribed to the double-layer charging, by plotting the current density against the scan rate, a linear trend was observed. The linear slope, equivalent to twice of the double-layer capacitance C<sub>dl</sub>, was used to represent the ECSA. As given by eq (1).

 $ECSA=C_{dl}/C_{s}$ , (1)

Cs is the specific capacitance of catalyst or the capacitance of an atomically smooth planar surface of the materialper unit area under identical electrolyte conditions.



**Fig.S1.** (a - d) FESEM images of CoFe<sub>2</sub>O<sub>4</sub>/NF precursors with different magnifications.



Fig.S2. (a-c) Cyclic voltammograms of the (a)  $CoFe_2O_4/NF$ ; (b)  $CoO_x/NF$ ; and (c)  $FeO_x/NF$ measured at different scan rates from 2 to 10 mV s<sup>-1</sup> in 1.0 M KOH.

| Catalyst                             | η/ν            | η/V            | η/V                          | Rs   | R <sub>ct</sub> |
|--------------------------------------|----------------|----------------|------------------------------|------|-----------------|
|                                      | (j=10 mA∙cm⁻²) | (j=50 mA∙cm⁻²) | (j=100 mA∙cm <sup>-2</sup> ) | /Ω   | /Ω              |
| CoFe <sub>2</sub> O <sub>4</sub> /NF | 273            | 341            | 400                          | 0.83 | 2.08            |
| CoO <sub>x</sub> /NF                 | 317            | 413            | 478                          | 0.63 | 4.49            |
| FeO <sub>x</sub> /NF                 | 360            | 449            | 529                          | 0.73 | 7.24            |

**Table S1.** OER properties of CoFe<sub>2</sub>O<sub>4</sub>/NF, CoO<sub>x</sub>/NF and FeO<sub>x</sub>/NF.

**Table S2.** Comparision of OER electrocatalytic activity of reported CoFe<sub>2</sub>O<sub>4</sub> Catalysts in 1.0 M KOH (overpotentials $\eta$  calculated by using the formula  $\eta = E_{RHE} - 1.23$  V).

| Cotolyct                                                | η/mV                   | mass loading/mg sm <sup>-2</sup> | Pof                                         |  |
|---------------------------------------------------------|------------------------|----------------------------------|---------------------------------------------|--|
| Catalyst                                                | ( <i>j</i> =10mA⋅cm⁻²) |                                  | Ref.<br>This work<br>This work<br>This work |  |
| CoFe <sub>2</sub> O <sub>4</sub> /NF                    | 273                    | 0.46                             | This work                                   |  |
| CoO <sub>x</sub> /NF                                    | 317                    | 0.40                             | This work                                   |  |
| FeO <sub>x</sub> /NF                                    | 360                    | 0.38                             | This work                                   |  |
| CoFe <sub>2</sub> O <sub>4</sub>                        | 340                    | 0.32                             | 1                                           |  |
| CoFe <sub>2</sub> O <sub>4</sub> /biomass carbon hybrid | 300 (1.0 M NaOH)       | 0.34                             | 2                                           |  |
| CoFe <sub>2</sub> O <sub>4</sub> /SWNTs                 | 310                    | 0.50                             | 3                                           |  |
| $Co_{1-y}Fe_yO_x/CNTs$                                  | 280                    | 0.52                             | 4                                           |  |
| CoFe <sub>2</sub> O <sub>4</sub> Nanoplates             | 410                    | 1.06                             | 5                                           |  |
| Co/CoFe <sub>2</sub> O <sub>4</sub> @N-graphene         | 350                    | ~                                | 6                                           |  |
| Au-CoFe <sub>2</sub> O <sub>4</sub>                     | 312                    | ~                                | 7                                           |  |

### Reference

- Z. Zhang, J. Zhang, T. Wang, Z. Li, G. Yang, H. Bian, J. Li and D. Gao, *RSC Adv.*, 2018, **8**, 5338-5343.
- 2. S. Bi, J. Li, Q. Zhong, C. Chen, Q. Zhang and Y. Yao, *RSC Adv.*, 2018, **8**, 22799-22805.
- Y. Ding, J. Zhao, W. Zhang, J. Zhang, X. Chen, F. Yang, X. Zhang, ACS Applied Energy Materials, 2018, 2, 1026-1032.
- Y. Fang, X. Li, S. Zhao, J. Wu, F. Li, M. Tian, X. Long, J. Jin and J. Ma, *RSC Adv.*, 2016, 6, 80613-80620.
- 5. C. Mahala, M. D. Sharma and M. Basu, *Electrochim. Acta*, 2018, **273**, 462-473.
- Y. Niu, X. Huang, L. Zhao, W. Hu and C. M. Li, ACS Sustainable Chem. Eng., 2018, 6, 3556-3564.
- 7. G. Zhu, X. Li, Y. Liu, W. Zhu and X. Shen, Appl. Surf. Sci., 2019, 478, 206-212.