Supplementary information

Intra-Nanogap Controllable Au Plates as Efficient, Robust, and Reproducible Surface-Enhanced Raman Scattering-Active Platforms

Siyeong Yang,[‡]^a Minjin Kim,[‡]^a Sanghyeok Park,^b Hongki Kim,^c Jinyoung Jeong,^{d,e} Juyeon Jung, ^{c,d} Eun-Kyung Lim,^{c,d} Min-Kyo Seo,^b Bongsoo Kim,^{*a} and Taejoon Kang^{*c,d}

^aDepartment of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.

^bDepartment of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.

^cBionanotechnology Research Center, 125 Gwahak-ro, Yuseong-gu, KRIBB, Daejeon 34141, Korea.

^dDepartment of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.

^eEnvironmental Disease Research Center, 125 Gwahak-ro, Yuseong-gu, KRIBB, Daejeon 34141, Korea.

[‡]These authors contributed equally to this work.

Corresponding Author

*E-mail: bongsoo@kaist.ac.kr (B.K.); kangtaejoon@kribb.re.kr (T.K.)

The enhancement factor (EF) of the porous plate was estimated using the equation:¹

$$EF = (I_{plate}/N_{plate})/(I_{normal}/N_{normal})$$

where I_{plate} and N_{plate} are the intensity and the number of 4-ABT contributing to the SERS signals, respectively. I_{normal} and N_{normal} are the intensity and the numbers of 4-ABT contributing to the normal Raman signals, respectively.

As the peak intensity at 1,141 cm⁻¹ for 4-ABT, I_{plate} and I_{normal} are 5270 and 24, respectively. N_{plate} and N_{normal} are the number of adsorbed 4-ABT on the porous plate and Si substrate within the laser spot size, respectively, and estimated as follows:²

 $N_{\text{plate}} = 7 \times (2 \times A/2 \times \pi \times d) / (0.39 \times 10^{-18}) = 56.1 \times 10^{3}$

 $N_{normal} = 5 \times 10^{-6} \times 0.1 \times 6.02 \times 10^{23} \times \pi \times (A/2)^{2}/s^{2} = 0.945 \times 10^{10}$

where *A* is the laser spot size (1 μ m), *d* is the thickness of porous region (100 nm), and *s* is the edge length of the Si substrate (5 mm). Finally, the estimated EF value was 3.7×10^7 .

Fig. S1 Cross-sectional TEM image of the Au nanoplate.

Fig. S2 HR-TEM image of the nanoporous Au plate. Insets are FFT patterns of dashed line boxes.

Fig. S3 (a) Optical image of the AuAg alloy nanoplate on a substrate. (b) XPS spectra obtained from the red circle in (a).

Fig. S4 Composition of Ag on the surfaces of AuAg alloy nanoplates synthesized at temperatures ranging from 440 to 520°C with intervals of 10°C. The atomic ratio of Ag increases from 36.9 to 72.6% as the reaction temperature increases from 440 to 520°C. Data represent the mean plus standard deviation from twelve measurements.

Fig. S5 Full SERS spectra of 4-ABT measured on nanoporous Au plates depending on the reaction temperatures from 440 to 520°C.

Reference

- 1. G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim and J. Jeong, *Advanced Functional Materials*, 2017, **27**, 1701832.
- J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe and W. C. Shih, *Nanoscale*, 2013, 5, 4105–4109.