# Supplementary Information

# for:

### A novel coordination mode <sup>k1</sup>-N-Br-Pyridylbenz-(imida, oxa or othia)-zole to Pt(II): Synthesis, Characterization, Electrochemical and Structural Analysis

Juan Nicasio-Collazo, \*<sup>a,b</sup> Gonzalo Ramírez-García,<sup>a</sup> Marcos Flores-Álamo,<sup>c</sup> Silvia Gutiérrez-Granados, <sup>a</sup>Juan M. Peralta-Hernández,<sup>a</sup> José Luis Maldonado,<sup>b</sup> J. Oscar C. Jimenez-Halla,<sup>a</sup> and Oracio Serrano\*<sup>a</sup>

a Departamento de Química, Universidad de Guanajuato, Cerro de la Venada S/N, CP 36040, Guanajuato, Gto. México. E-mail: nicasio.collazo@cio.mx, oraciosinh@ugto.mx

b Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 37000, León, Guanajuato, México

c Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Coyoacán, Cd. Universitaria, CP 04510, Ciudad de México, México.

# **UV-Vis Spectra**



Figure S1. UV-Vis spectra of ligands  $L_{1-3}$  and complexes [trans-PtCl<sub>2</sub>(DMSO)( $L_{1-3}$ )] in a solution of DMF.

|     | 1    | L <sub>1</sub> |     | 2    | L <sub>2</sub> |     | 3    | L <sub>3</sub> |                                 |
|-----|------|----------------|-----|------|----------------|-----|------|----------------|---------------------------------|
| IR  | Ram  | IR             | IR  | Ram  | IR             | IR  | Ram  | IR             | Assignme                        |
|     | an   |                |     | an   |                |     | an   |                | nt                              |
| 306 | -    | 304            | 303 | -    | 304            | 303 | -    | 306            | $\nu$ (CH <sub>aryl</sub> )     |
| 4   |      | 2              | 7   |      | 9              | 7   |      | 2              |                                 |
| 160 | 1599 | 159            | -   | -    | -              | -   | -    | -              | $\nu$ (CH <sub>ring</sub> )     |
| 9   |      | 7              |     |      |                |     |      |                |                                 |
| 159 | 1582 | 157            | -   | -    | -              | -   | -    | -              | $\nu$ (CH <sub>ring</sub> )     |
| 5   |      | 7              |     |      |                |     |      |                |                                 |
| 144 | -    | 143            | 141 | -    | 142            | 141 | -    | 140            | $\delta_{a}$ (CH <sub>3</sub> ) |
| 5   |      | 5              | 2   |      | 1              | 2   |      | 8              |                                 |
| 138 | 1402 | 138            | 138 | 1394 | 131            | 138 | 1394 | 134            | δ (CH₃)                         |
| 9   |      | 9              | 4   |      | 5              | 4   |      | 9              |                                 |
| 115 | -    | -              | 115 | 1150 | -              | 115 | 1150 | -              | $v_{a}$ (SO)                    |
| 2   |      |                | 6   |      |                | 6   |      |                |                                 |
| 112 | 1135 | -              | 113 | -    | -              | 113 | 1133 | -              | $\nu_{s}$ (SO)                  |
| 6   |      |                | 3   |      |                | 3   |      |                |                                 |
| 697 | 657  | 699            | 690 | 697  | 643            | 690 | 697  | 649            | v (C-Br)                        |
| -   | 330  | -              | -   | 334  | -              | -   | 334  | -              | $\nu_{s}$ (Pt-Cl)               |
| -   | 283  | -              | -   | 273  | -              | -   | 274  | -              | $v_{s}$ (Pt-S)                  |

**Table S1.** Assignment for the most characteristic IR and Raman band of complexes [trans-Pt(Cl)2( $L_{1-}$ <br/>3)(DMSO)].

 $\nu$  and  $\delta$  means stretching and bending respectively,  $_{a}$  means asymmetric,  $_{s}$  means symmetric

# **Electrochemical data**

 Table S2.
 Electrochemical data free ligand and Pt(II) complexes.

| Compounds | E <sub>n</sub> (V) |  |
|-----------|--------------------|--|
| •         | pv ;               |  |

|                                       | i    | li   | lii  | lv   | v   | Vi  | Vii  | viii |
|---------------------------------------|------|------|------|------|-----|-----|------|------|
| PtCl <sub>2</sub> (DMSO) <sub>2</sub> | -    | -    | -    | -    | -   | -   | -0.4 | 1.3  |
| L <sub>2</sub>                        | -1.6 | -1.9 | -1.8 | -    | 0.9 | 1.4 | -    | -    |
| 2                                     | -1.6 | -1.9 | -1.8 | -    | -   | 1.4 | -0.5 | 1.1  |
| L <sub>3</sub>                        | -1.5 | -1.8 | -1.7 | -2.4 | 0.9 | 1.5 | -    | -    |
| 3                                     | -1.7 | -1.9 | -1.7 | -    | -   | -   | -0.5 | 1.2  |
| L <sub>1</sub>                        | -1.8 | -2.2 | -2.0 | -    | 0.9 | -   | -    | -    |
| 1                                     | -    | -    | -    | -    | -   | -   | -    | -    |



**Eq. S1.** COE = cyclooctene.



Eq. S2.

Calculated reaction energies are shown in kcal·mol<sup>-1</sup>.

NMR Spectra



**Fig. S2**. <sup>1</sup>H NMR spectrum of **L**<sub>1</sub> in CDCl<sub>3</sub> at RT



Fig. S3. <sup>1</sup>H NMR spectrum of  $L_1$  in CDCl<sub>3</sub> at RT



Fig. S4. <sup>13</sup>C NMR spectrum of L<sub>2</sub> in CDCl<sub>3</sub> at RT

).0



Fig. S5. <sup>13</sup>C NMR spectrum of  $L_2$  in CDCl<sub>3</sub> at RT



Fig. S6. <sup>13</sup>C DEPT NMR spectrum of  $L_2$  in CDCl<sub>3</sub> at RT



Fig. S7. <sup>1</sup>H NMR spectrum of  $L_3$  in CDCl<sub>3</sub> at RT



Fig. S8. <sup>13</sup>C NMR spectrum of  $L_3$  in CDCl<sub>3</sub> at RT



Figure S9. <sup>13</sup>C DEPT NMR spectrum of L<sub>3</sub> in CDCl<sub>3</sub> at RT





Fig. S11. <sup>13</sup>C NMR spectrum of 2 in DMSO-d<sub>6</sub> at RT



Fig. S12. <sup>13</sup>C DEPT NMR spectrum of 2 in DMSO-d<sub>6</sub> at RT



Fig. S13. <sup>1</sup>H COSY NMR spectrum of 2 in DMSO-d<sub>6</sub> at RT



Fig. S14.  $^{1}H^{-1}H$  NOESY NMR spectrum of 2 in DMSO-d<sub>6</sub> at RT







Fig. S17. <sup>195</sup>Pt NMR spectrum of 2 in DMSO-d<sub>6</sub> at RT



Fig. S18. <sup>1</sup>H NMR spectrum of **3** in DMSO-d<sub>6</sub> at RT



Fig. S19. <sup>13</sup>C HMBC NMR spectrum of **3** in DMSO-d<sub>6</sub> at RT



Fig. S20. <sup>13</sup>C DEPT NMR spectrum of 3 in DMSO-d<sub>6</sub> at RT





Fig. S22. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of **3** in DMSO-d<sub>6</sub> at RT



Fig. S23. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of 3 in DMSO-d<sub>6</sub> at RT



Fig. S24.  $^{195}\text{Pt}$  NMR spectrum of 3 in DMSO-d\_6 at RT

# Raman and FTIR spectra



Fig. S25. Raman spectrum of [Pt(Cl)<sub>2</sub>(DMSO)<sub>2</sub>].







Fig. S27. Raman spectrum of complex 1.

![](_page_30_Figure_0.jpeg)

Fig. S28. IR spectrum (KBr) of complex 2.

![](_page_30_Figure_2.jpeg)

Fig. S29. Raman spectrum of complex 2.

![](_page_31_Figure_0.jpeg)

Fig. S30. IR spectrum (KBr) of complex 3.

![](_page_31_Figure_2.jpeg)

Fig. S31. Raman spectrum of complex 3.

# Crystal data and structure refinement for complex 2.

| Identification code               | shelx                                                                        |                                |  |  |
|-----------------------------------|------------------------------------------------------------------------------|--------------------------------|--|--|
| Empirical formula                 | $C_{14}$ H <sub>13</sub> BrCl <sub>2</sub> N <sub>2</sub> O <sub>2</sub> PtS |                                |  |  |
| Formula weight                    | 619.22                                                                       |                                |  |  |
| Temperature                       | 130(2) K                                                                     |                                |  |  |
| Wavelength                        | 0.71073 Å                                                                    |                                |  |  |
| Crystal system                    | Triclinic                                                                    |                                |  |  |
| Space group                       | P -1                                                                         |                                |  |  |
| Unit cell dimensions              | a = 8.4296(7) Å                                                              | $\alpha$ = 94.288(7)°.         |  |  |
|                                   | b = 8.4438(7) Å                                                              | $\beta = 107.426(8)^{\circ}.$  |  |  |
|                                   | c = 13.7685(12) Å                                                            | $\gamma = 107.058(7)^{\circ}.$ |  |  |
| Volume                            | 879.58(14) Å <sup>3</sup>                                                    |                                |  |  |
| Z                                 | 2                                                                            |                                |  |  |
| Density (calculated)              | 2.338 Mg/m <sup>3</sup>                                                      |                                |  |  |
| Absorption coefficient            | 10.678 mm <sup>-1</sup>                                                      |                                |  |  |
| F(000)                            | 580                                                                          |                                |  |  |
| Crystal size                      | 0.380 x 0.170 x 0.080 mm <sup>3</sup>                                        |                                |  |  |
| Theta range for data collection   | 3.382 to 29.388°.                                                            |                                |  |  |
| Index ranges                      | -11<=h<=10, -9<=k<=11, -18<=                                                 | l<=18                          |  |  |
| Reflections collected             | 8147                                                                         |                                |  |  |
| Independent reflections           | 4127 [R(int) = 0.0326]                                                       |                                |  |  |
| Completeness to theta = 25.242°   | 99.7 %                                                                       |                                |  |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>                                  |                                |  |  |
| Data / restraints / parameters    | 4127 / 0 / 210                                                               |                                |  |  |
| Goodness-of-fit on F <sup>2</sup> | 1.055                                                                        |                                |  |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0300, wR2 = 0.0531                                                    |                                |  |  |
| R indices (all data)              | R1 = 0.0376, wR2 = 0.0571                                                    |                                |  |  |
| Extinction coefficient            | n/a                                                                          |                                |  |  |
| Largest diff. peak and hole       | 1.603 and -1.731 e.Å <sup>-3</sup>                                           |                                |  |  |

|       | x        | У       | Z        | U(eq) |
|-------|----------|---------|----------|-------|
| C(1)  | 6400(6)  | 871(7)  | 3755(5)  | 35(2) |
| C(2)  | 5416(7)  | 2938(6) | 4882(4)  | 32(1) |
| C(3)  | 4097(6)  | 5518(5) | 1048(4)  | 17(1) |
| C(4)  | 1777(6)  | 4598(6) | -329(4)  | 19(1) |
| C(5)  | 1640(6)  | 3476(5) | 351(4)   | 18(1) |
| C(6)  | 145(6)   | 2058(6) | 95(4)    | 22(1) |
| C(7)  | -1132(6) | 1828(6) | -852(4)  | 27(1) |
| C(8)  | -948(6)  | 2986(6) | -1532(4) | 24(1) |
| C(9)  | 523(6)   | 4409(6) | -1275(4) | 22(1) |
| C(10) | 5787(6)  | 6721(5) | 1703(4)  | 18(1) |
| C(11) | 8049(6)  | 7392(6) | 3209(4)  | 27(1) |
| C(12) | 8970(6)  | 8891(6) | 2965(5)  | 27(1) |
| C(13) | 8174(6)  | 9259(6) | 2026(5)  | 25(1) |
| C(14) | 6569(6)  | 8163(6) | 1364(4)  | 24(1) |
| Br(1) | 9046(1)  | 6838(1) | 4511(1)  | 72(1) |
| Cl(1) | 5553(2)  | 2014(2) | 1600(1)  | 29(1) |
| CI(2) | 1919(2)  | 3585(2) | 3095(1)  | 28(1) |
| N(1)  | 3157(4)  | 4088(4) | 1220(3)  | 16(1) |
| N(2)  | 6512(5)  | 6346(5) | 2625(3)  | 22(1) |
| O(1)  | 3197(4)  | 21(4)   | 3788(3)  | 28(1) |
| O(2)  | 3346(4)  | 5894(4) | 127(3)   | 19(1) |
| Pt(1) | 3839(1)  | 2841(1) | 2417(1)  | 17(1) |
| S(1)  | 4560(1)  | 1502(1) | 3714(1)  | 19(1) |
|       |          |         |          |       |

Table S3. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> $x \ 10^3$ ) for complex **2**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(1)-S(1)   | 1.769(5)   |
|-------------|------------|
| C(1)-H(1A)  | 0.9800     |
| C(1)-H(1B)  | 0.9800     |
| C(1)-H(1C)  | 0.9800     |
| C(2)-S(1)   | 1.755(6)   |
| C(2)-H(2A)  | 0.9800     |
| С(2)-Н(2В)  | 0.9800     |
| C(2)-H(2C)  | 0.9800     |
| C(3)-N(1)   | 1.317(5)   |
| C(3)-O(2)   | 1.345(5)   |
| C(3)-C(10)  | 1.456(7)   |
| C(4)-C(9)   | 1.373(7)   |
| C(4)-O(2)   | 1.375(5)   |
| C(4)-C(5)   | 1.386(6)   |
| C(5)-C(6)   | 1.390(6)   |
| C(5)-N(1)   | 1.391(6)   |
| C(6)-C(7)   | 1.377(7)   |
| С(6)-Н(6)   | 0.9500     |
| C(7)-C(8)   | 1.410(6)   |
| C(7)-H(7)   | 0.9500     |
| C(8)-C(9)   | 1.381(7)   |
| C(8)-H(8)   | 0.9500     |
| C(9)-H(9)   | 0.9500     |
| C(10)-N(2)  | 1.339(6)   |
| C(10)-C(14) | 1.391(5)   |
| C(11)-N(2)  | 1.305(6)   |
| C(11)-C(12) | 1.401(6)   |
| C(11)-Br(1) | 1.895(5)   |
| C(12)-C(13) | 1.371(7)   |
| C(12)-H(12) | 0.9500     |
| C(13)-C(14) | 1.385(7)   |
| С(13)-Н(13) | 0.9500     |
| C(14)-H(14) | 0.9500     |
| Cl(1)-Pt(1) | 2.2990(12) |
|             |            |

| Table S4. | Bond lengths [Å] and angles [°] for complex 2. |
|-----------|------------------------------------------------|

| Cl(2)-Pt(1)      | 2.3022(12) |
|------------------|------------|
| N(1)-Pt(1)       | 2.051(3)   |
| O(1)-S(1)        | 1.463(3)   |
| Pt(1)-S(1)       | 2.2108(11) |
| S(1)-C(1)-H(1A)  | 109.5      |
| S(1)-C(1)-H(1B)  | 109.5      |
| H(1A)-C(1)-H(1B) | 109.5      |
| S(1)-C(1)-H(1C)  | 109.5      |
| H(1A)-C(1)-H(1C) | 109.5      |
| H(1B)-C(1)-H(1C) | 109.5      |
| S(1)-C(2)-H(2A)  | 109.5      |
| S(1)-C(2)-H(2B)  | 109.5      |
| H(2A)-C(2)-H(2B) | 109.5      |
| S(1)-C(2)-H(2C)  | 109.5      |
| H(2A)-C(2)-H(2C) | 109.5      |
| H(2B)-C(2)-H(2C) | 109.5      |
| N(1)-C(3)-O(2)   | 113.5(4)   |
| N(1)-C(3)-C(10)  | 129.7(4)   |
| O(2)-C(3)-C(10)  | 116.7(3)   |
| C(9)-C(4)-O(2)   | 127.9(4)   |
| C(9)-C(4)-C(5)   | 124.4(4)   |
| O(2)-C(4)-C(5)   | 107.7(4)   |
| C(4)-C(5)-C(6)   | 119.9(5)   |
| C(4)-C(5)-N(1)   | 107.7(4)   |
| C(6)-C(5)-N(1)   | 132.4(4)   |
| C(7)-C(6)-C(5)   | 117.1(4)   |
| C(7)-C(6)-H(6)   | 121.5      |
| C(5)-C(6)-H(6)   | 121.5      |
| C(6)-C(7)-C(8)   | 121.8(4)   |
| C(6)-C(7)-H(7)   | 119.1      |
| C(8)-C(7)-H(7)   | 119.1      |
| C(9)-C(8)-C(7)   | 121.4(5)   |
| C(9)-C(8)-H(8)   | 119.3      |
| C(7)-C(8)-H(8)   | 119.3      |
| C(4)-C(9)-C(8)   | 115.5(4)   |
| C(4)-C(9)-H(9)   | 122.2      |

| C(8)-C(9)-H(9)                     | 122.2                    |
|------------------------------------|--------------------------|
| N(2)-C(10)-C(14)                   | 123.4(5)                 |
| N(2)-C(10)-C(3)                    | 116.2(4)                 |
| C(14)-C(10)-C(3)                   | 120.4(4)                 |
| N(2)-C(11)-C(12)                   | 125.4(5)                 |
| N(2)-C(11)-Br(1)                   | 116.2(3)                 |
| C(12)-C(11)-Br(1)                  | 118.4(4)                 |
| C(13)-C(12)-C(11)                  | 116.2(5)                 |
| C(13)-C(12)-H(12)                  | 121.9                    |
| C(11)-C(12)-H(12)                  | 121.9                    |
| C(12)-C(13)-C(14)                  | 120.6(4)                 |
| C(12)-C(13)-H(13)                  | 119.7                    |
| C(14)-C(13)-H(13)                  | 119.7                    |
| C(13)-C(14)-C(10)                  | 117.5(5)                 |
| C(13)-C(14)-H(14)                  | 121.3                    |
| C(10)-C(14)-H(14)                  | 121.3                    |
| C(3)-N(1)-C(5)                     | 105.5(4)                 |
| C(3)-N(1)-Pt(1)                    | 128.5(3)                 |
| C(5)-N(1)-Pt(1)                    | 125.7(3)                 |
| C(11)-N(2)-C(10)                   | 116.9(4)                 |
| C(3)-O(2)-C(4)                     | 105.5(3)                 |
| N(1)-Pt(1)-S(1)                    | 179.52(10)               |
| N(1)-Pt(1)-Cl(1)                   | 87.00(10)                |
| S(1)-Pt(1)-Cl(1)                   | 93.47(4)                 |
| N(1)-Pt(1)-Cl(2)                   | 89.68(10)                |
| S(1)-Pt(1)-Cl(2)                   | 89.84(4)                 |
| Cl(1)-Pt(1)-Cl(2)                  | 174.85(5)                |
| O(1)-S(1)-C(2)                     | 109.0(2)                 |
| O(1)-S(1)-C(1)                     | 106.6(2)                 |
| C(2)-S(1)-C(1)                     | 100.7(3)                 |
| O(1)-S(1)-Pt(1)                    | 117.86(14)               |
| C(2)-S(1)-Pt(1)<br>C(1)-S(1)-Pt(1) | 108.92(16)<br>112.43(18) |
|                                    |                          |

Symmetry transformations used to generate equivalent atoms:

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C(1)  | 32(3)           | 52(4)           | 33(4)           | 23(3)           | 14(3)           | 24(3)           |
| C(2)  | 50(3)           | 19(3)           | 15(3)           | 0(2)            | -3(3)           | 7(2)            |
| C(3)  | 25(2)           | 18(2)           | 13(3)           | 6(2)            | 9(2)            | 9(2)            |
| C(4)  | 21(2)           | 19(2)           | 20(3)           | 2(2)            | 9(2)            | 10(2)           |
| C(5)  | 26(2)           | 17(2)           | 15(3)           | 3(2)            | 7(2)            | 12(2)           |
| C(6)  | 26(2)           | 18(2)           | 18(3)           | 2(2)            | 5(2)            | 6(2)            |
| C(7)  | 23(2)           | 25(3)           | 25(3)           | -6(2)           | 3(2)            | 5(2)            |
| C(8)  | 29(3)           | 30(3)           | 13(3)           | 0(2)            | 0(2)            | 16(2)           |
| C(9)  | 28(3)           | 26(3)           | 13(3)           | 4(2)            | 4(2)            | 15(2)           |
| C(10) | 18(2)           | 15(2)           | 25(3)           | 3(2)            | 8(2)            | 8(2)            |
| C(11) | 19(2)           | 31(3)           | 24(3)           | 5(3)            | 3(2)            | 2(2)            |
| C(12) | 20(2)           | 25(3)           | 34(4)           | 2(3)            | 12(2)           | 4(2)            |
| C(13) | 22(2)           | 23(3)           | 31(4)           | 6(2)            | 14(2)           | 4(2)            |
| C(14) | 26(2)           | 21(2)           | 27(3)           | 13(2)           | 11(2)           | 7(2)            |
| Br(1) | 41(1)           | 87(1)           | 41(1)           | 36(1)           | -17(1)          | -20(1)          |
| Cl(1) | 36(1)           | 39(1)           | 27(1)           | 17(1)           | 17(1)           | 23(1)           |
| Cl(2) | 34(1)           | 38(1)           | 22(1)           | 11(1)           | 13(1)           | 21(1)           |
| N(1)  | 15(2)           | 21(2)           | 12(2)           | 4(2)            | 3(2)            | 7(2)            |
| N(2)  | 16(2)           | 24(2)           | 20(3)           | 8(2)            | 3(2)            | 2(2)            |
| O(1)  | 24(2)           | 25(2)           | 27(2)           | 12(2)           | 3(2)            | 2(1)            |
| O(2)  | 21(2)           | 19(2)           | 17(2)           | 8(2)            | 3(2)            | 6(1)            |
| Pt(1) | 18(1)           | 16(1)           | 14(1)           | 5(1)            | 4(1)            | 5(1)            |
| S(1)  | 19(1)           | 19(1)           | 17(1)           | 5(1)            | 4(1)            | 6(1)            |

Table S5. Anisotropic displacement parameters ( $Å^2x \ 10^3$ ) for ncj-nd-029. The anisotropicdisplacement factor exponent takes the form:  $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ 

Table S6. Torsion angles [°] for complex 2.

| C(9)-C(4)-C(5)-C(6)     | -0.9(7)   |
|-------------------------|-----------|
| O(2)-C(4)-C(5)-C(6)     | 178.3(4)  |
| C(9)-C(4)-C(5)-N(1)     | 179.9(4)  |
| O(2)-C(4)-C(5)-N(1)     | -0.9(5)   |
| C(4)-C(5)-C(6)-C(7)     | 1.3(7)    |
| N(1)-C(5)-C(6)-C(7)     | -179.8(5) |
| C(5)-C(6)-C(7)-C(8)     | -0.8(7)   |
| C(6)-C(7)-C(8)-C(9)     | -0.2(7)   |
| O(2)-C(4)-C(9)-C(8)     | -179.0(4) |
| C(5)-C(4)-C(9)-C(8)     | 0.0(7)    |
| C(7)-C(8)-C(9)-C(4)     | 0.5(7)    |
| N(1)-C(3)-C(10)-N(2)    | -0.4(7)   |
| O(2)-C(3)-C(10)-N(2)    | 179.2(4)  |
| N(1)-C(3)-C(10)-C(14)   | 179.3(4)  |
| O(2)-C(3)-C(10)-C(14)   | -1.1(6)   |
| N(2)-C(11)-C(12)-C(13)  | -0.6(8)   |
| Br(1)-C(11)-C(12)-C(13) | -178.4(4) |
| C(11)-C(12)-C(13)-C(14) | -1.5(7)   |
| C(12)-C(13)-C(14)-C(10) | 2.0(7)    |
| N(2)-C(10)-C(14)-C(13)  | -0.5(7)   |
| C(3)-C(10)-C(14)-C(13)  | 179.8(4)  |
| O(2)-C(3)-N(1)-C(5)     | -1.2(5)   |
| C(10)-C(3)-N(1)-C(5)    | 178.4(4)  |
| O(2)-C(3)-N(1)-Pt(1)    | 172.5(3)  |
| C(10)-C(3)-N(1)-Pt(1)   | -8.0(7)   |
| C(4)-C(5)-N(1)-C(3)     | 1.2(5)    |
| C(6)-C(5)-N(1)-C(3)     | -177.8(5) |
| C(4)-C(5)-N(1)-Pt(1)    | -172.6(3) |
| C(6)-C(5)-N(1)-Pt(1)    | 8.3(7)    |
| C(12)-C(11)-N(2)-C(10)  | 2.0(8)    |
| Br(1)-C(11)-N(2)-C(10)  | 179.8(3)  |
| C(14)-C(10)-N(2)-C(11)  | -1.4(7)   |
| C(3)-C(10)-N(2)-C(11)   | 178.3(4)  |
| N(1)-C(3)-O(2)-C(4)     | 0.6(5)    |

| C(10)-C(3)-O(2)-C(4) | -179.0(4) |
|----------------------|-----------|
| C(9)-C(4)-O(2)-C(3)  | 179.4(5)  |
| C(5)-C(4)-O(2)-C(3)  | 0.2(4)    |

Symmetry transformations used to generate equivalent atoms:

### **Computational methodology**

All the electronic-structure calculations were performed using density functional theory (DFT) as implemented in the Gaussian09 package.<sup>1</sup> Geometry optimizations without symmetry constraints were carried out with the hybrid local exchange-correlation M06-L functional<sup>2</sup> in conjunction with a mixed basis set: Pople's 6-311G(d) triple- $\zeta$  quality basis set with one polarization function for most of the light elements (C, H, O, Cl and those S and N that does not bind datively to the metal) and 6-311G(2d), the same basis set with two polarization functions for those S and N atoms which coordinate to the metal center, and for Br, I and Pt we have used the LANL08(d) and LANL2TZ(f) relativistic pseudopotentials,<sup>3</sup> respectively, for describing as accurate as possible the inner core of the heavy atoms. We called this level as M06-L/*mix-basis*. Subsequent harmonic frequency calculations were executed to corroborate the character of each optimized species, presumed to be critical points on the potential energy surface for two reasons: first, to get ensured we have analyzed true minima points on the potential energy surface; second, in order to obtain the thermal and entropic corrections for expressing the total energy, according to classical thermodynamics, as enthalpy and Gibbs free energy.

For improving the numerical precision in our reported self-consistent field (SCF) energies, we performed single-point calculations over each optimized geometry using the same M06-L functional but this time in conjunction with the Ahlrichs and coworkers' def2-tzvpp triple- $\zeta$  quality basis set.<sup>4</sup> Finally, we have also considered solvation effects added to the electronic Hamiltonian by performing single-point calculations over the optimized geometries at the same level of theory and using the SMD variation of IEFPCM of Truhlar and workers<sup>5</sup> with the dielectric standard values for dimethyl sulfoxide, in concordance with the experimental findings. Therefore, our final reported energy values are in solvent-phase. Thus, the final reported energies were calculated at the (SMD:dmso)M06-L/def2-tzvpp//M06-L/*mix-basis* level.

![](_page_42_Figure_0.jpeg)

**Fig. S32.** Geometry comparison between both isomers of  $Pt(Cl_2)(dmso)_2$ . Bond distances (bold) are shown in angstroms, bond angles in degrees and relative energies (enthalpy; Gibbs free energy in parenthesis) in kcal·mol<sup>-1</sup>.

![](_page_43_Figure_0.jpeg)

**Fig. S33.** Relative energies (enthalpy; Gibbs free energy in parenthesis) of 2-(6-bromo-2-pyridyl)benz-(imida, oxa and othia)-zole coordination isomers given in kcal·mol<sup>-1</sup>.

![](_page_44_Figure_0.jpeg)

**Fig. S34.** NBO charges (bold blue) and Wiberg bond indices (red) for both **Pt(Cl<sub>2</sub>)(dmso)(L2)** isomers calculated at the M06-L/*mix-basis* level.

**Table S7.** Donor-acceptor Natural Bond Orbitals showing the interaction energy calculated using the second-order perturbation theory from the NBO analysis. Values are in kcal·mol<sup>-1</sup>.

![](_page_44_Figure_3.jpeg)

![](_page_45_Figure_0.jpeg)

**Table S8.** Donor-acceptor Natural Bond Orbitals showing the Br  $\rightarrow$  (C-H)\* bond interactions energy calculated using the second-order perturbation theory from the NBO analysis found for complex Pt(Cl<sub>2</sub>)(dmso)(L<sub>2</sub>) isomer1.\* Values are in kcal·mol<sup>-1</sup>.

![](_page_45_Figure_2.jpeg)

### 0.13

\*For the rest of complexes, the trend is very similar.

**Table S8.** Cartesian coordinates (x-y-z format) of the optimized geometries at the M06-L/mix-basislevel.

|      | cis-Pt(Cl <sub>2</sub> )(dmso) <sub>2</sub> |                                         |           |      | <pre>trans-Pt(Cl<sub>2</sub>)(dmso)<sub>2</sub></pre> |                      |           |  |
|------|---------------------------------------------|-----------------------------------------|-----------|------|-------------------------------------------------------|----------------------|-----------|--|
| E(sc | f) = -2146.16                               | 6105580 a.u.                            |           | E(sc | f) = -2146.15                                         | 5673133 a.u.         |           |  |
|      |                                             |                                         |           |      |                                                       |                      |           |  |
| С    | -3.200797                                   | 0.529605                                | -0.522057 | С    | -3.017160                                             | -1.537150            | 0.266721  |  |
| Н    | -3.123504                                   | 0.022345                                | -1.482421 | Н    | -2.719023                                             | -2.260013            | -0.490616 |  |
| Н    | -3.836371                                   | 1.414280                                | -0.594727 | Н    | -4.101104                                             | -1.409660            | 0.281909  |  |
| Н    | -3.552963                                   | -0.173074                               | 0.230721  | Н    | -2.626416                                             | -1.849650            | 1.235481  |  |
| С    | -1.853500                                   | 1.725153                                | 1.565970  | С    | -2.911389                                             | 1.052480             | 1.159963  |  |
| Н    | -2.132110                                   | 0.878550                                | 2.195701  | Н    | -2.517956                                             | 0.662955             | 2.100625  |  |
| Н    | -2.637677                                   | 2.484445                                | 1.538390  | Н    | -4.002617                                             | 1.031443             | 1.139553  |  |
| Н    | -0.906117                                   | 2.154760                                | 1.892506  | Н    | -2.531746                                             | 2.059132             | 0.988603  |  |
| Cl   | -1.647809                                   | -2.176099                               | 0.017402  | Cl   | 0.061371                                              | -2.362296            | 0.052950  |  |
| Cl   | 1.648299                                    | -2.175872                               | -0.017294 | Cl   | -0.061427                                             | 2.362305             | -0.052689 |  |
| 0    | -1.259071                                   | 2.267560                                | -0.974800 | 0    | -2.893323                                             | 0.487119             | -1.450471 |  |
| Ρt   | 0.000119                                    | -0.500921                               | -0.000116 | Pt   | -0.000020                                             | -0.000005            | 0.000054  |  |
| S    | -1.571674                                   | 1.129148                                | -0.095991 | S    | -2.306676                                             | 0.039905             | -0.186785 |  |
| 0    | 1.258823                                    | 2.266874                                | 0.976229  | 0    | 2.893609                                              | -0.486561            | 1.450445  |  |
| S    | 1.571403                                    | 1.129417                                | 0.096177  | S    | 2.306756                                              | -0.039850            | 0.186675  |  |
| С    | 3.201050                                    | 0.530055                                | 0.520694  | С    | 2.911392                                              | -1.052922            | -1.159742 |  |
| Н    | 3.836322                                    | 1.414913                                | 0.593737  | Н    | 4.002617                                              | -1.031579            | -1.139590 |  |
| Н    | 3.124522                                    | 0.021939                                | 1.480668  | Н    | 2.532064                                              | -2.059591            | -0.987809 |  |
| Н    | 3.553011                                    | -0.171894                               | -0.232852 | Н    | 2.517634                                              | -0.663972            | -2.100504 |  |
| С    | 1.852035                                    | 1.727164                                | -1.565358 | С    | 3.017056                                              | 1.537061             | -0.267654 |  |
| Н    | 0.904153                                    | 2.156343                                | -1.891014 | Н    | 2.719518                                              | 2.260123             | 0.489722  |  |
| Н    | 2.131083                                    | 0.881372                                | -2.195997 | Н    | 2.625602                                              | 1.849324             | -1.236212 |  |
| Н    | 2.635633                                    | 2.487028                                | -1.537397 | Н    | 4.100984                                              | 1.409535             | -0.283609 |  |
|      |                                             | <b>1</b> (X = NPh)                      |           |      |                                                       | 12(X = 0)            |           |  |
| Flsc | f) =870.63                                  | 7958254 a u                             |           | F(sc | f) =659 443                                           | (х с)<br>8671854 а ц |           |  |
| L(3C | 1) - 070.03                                 | , , , , , , , , , , , , , , , , , , , , |           | L(30 | 1) - 033.443                                          | 507 1054 0.0.        |           |  |
| С    | -0.447455                                   | -0.699478                               | 0.292793  | С    | 1.030633                                              | 0.286723             | 0.000261  |  |
| С    | -2.619341                                   | -1.071167                               | 0.024410  | С    | 3.176292                                              | 0.509346             | -0.000163 |  |
| С    | -1.889427                                   | -2.269486                               | 0.163561  | С    | 2.817285                                              | -0.842979            | 0.000208  |  |

| С  | -2.554720 | -3.497247 | 0.110812  | С  | 3.807801  | -1.824943 | 0.000250  |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н  | -1.998560 | -4.424640 | 0.219794  | Н  | 3.544446  | -2.878689 | 0.000488  |
| С  | -3.924061 | -3.486343 | -0.094349 | С  | 5.127558  | -1.397101 | 0.000016  |
| Н  | -4.467296 | -4.427186 | -0.141662 | Н  | 5.928028  | -2.132830 | 0.000099  |
| С  | -4.630707 | -2.282427 | -0.253033 | С  | 5.459305  | -0.033641 | -0.000332 |
| Н  | -5.704405 | -2.314964 | -0.422450 | Н  | 6.506587  | 0.257314  | -0.000497 |
| С  | -3.992371 | -1.051459 | -0.200846 | С  | 4.483213  | 0.958552  | -0.000475 |
| Н  | -4.540884 | -0.122245 | -0.337335 | Н  | 4.733302  | 2.015178  | -0.000739 |
| С  | 0.805679  | 0.029202  | 0.522351  | С  | -0.337314 | 0.786606  | 0.000243  |
| С  | 3.061555  | 0.053898  | 0.235256  | С  | -2.547289 | 0.267758  | 0.000042  |
| С  | 3.230845  | 1.239310  | 0.949261  | С  | -2.946821 | 1.605584  | 0.000065  |
| Н  | 4.213778  | 1.678067  | 1.086726  | Н  | -3.997117 | 1.877593  | 0.000035  |
| С  | 2.084718  | 1.817621  | 1.473344  | С  | -1.940775 | 2.558809  | 0.000118  |
| Н  | 2.153400  | 2.735264  | 2.052997  | Н  | -2.194243 | 3.616167  | 0.000084  |
| С  | 0.852756  | 1.212001  | 1.263591  | С  | -0.611809 | 2.155403  | 0.000225  |
| Н  | -0.053225 | 1.640687  | 1.682578  | Н  | 0.198327  | 2.877684  | 0.000256  |
| Br | 4.627266  | -0.795116 | -0.501892 | Br | -3.912745 | -1.088633 | -0.000163 |
| Ν  | -0.548436 | -2.005906 | 0.328990  | Ν  | 1.436931  | -0.943876 | 0.000458  |
| Ν  | 1.914087  | -0.540093 | 0.014342  | Ν  | -1.305710 | -0.147688 | 0.000107  |
| Ν  | -1.675025 | -0.059826 | 0.116647  | 0  | 2.024965  | 1.241248  | -0.000089 |
| С  | -1.922661 | 1.312650  | -0.146149 |    |           |           |           |
| С  | -1.196162 | 1.978567  | -1.132334 |    |           |           |           |
| С  | -2.897468 | 1.990107  | 0.584697  |    |           |           |           |
| С  | -1.434847 | 3.325323  | -1.370884 |    |           |           |           |
| Н  | -0.448302 | 1.434185  | -1.704659 |    |           |           |           |
| С  | -3.140499 | 3.334190  | 0.327789  |    |           |           |           |
| Н  | -3.447873 | 1.461910  | 1.359868  |    |           |           |           |
| С  | -2.407892 | 4.005957  | -0.645174 |    |           |           |           |
| Н  | -0.864322 | 3.842489  | -2.138535 |    |           |           |           |

**L3** (X = S)

3.860428

5.058532

0.899095

-0.840620

E(scf) = -982.409821300 a.u.

-3.901537

-2.597113

Н

Н

| С | 0.869895 | 0.472226  | -0.000050 |
|---|----------|-----------|-----------|
| С | 3.319047 | 0.417201  | -0.000209 |
| С | 2.645703 | -0.828695 | -0.000054 |
| С | 3.394171 | -2.012501 | -0.000003 |
| Н | 2.874121 | -2.966713 | 0.000120  |
| С | 4.774436 | -1.934760 | -0.000113 |
| Н | 5.364865 | -2.847474 | -0.000076 |
| С | 5.426526 | -0.693596 | -0.000272 |

**L4** (X = NH) E(scf) = -639.576212225 a.u.

| С | -1.025498 | 0.400651  | -0.001342 |
|---|-----------|-----------|-----------|
| С | -3.239644 | 0.546467  | 0.007137  |
| С | -2.795478 | -0.795391 | -0.006125 |
| С | -3.733898 | -1.833024 | -0.012768 |
| Н | -3.403254 | -2.868149 | -0.023052 |
| С | -5.076671 | -1.495695 | -0.005841 |
| Н | -5.827278 | -2.282504 | -0.010876 |
| С | -5.496712 | -0.154170 | 0.007434  |

| Н  | 6.513268  | -0.658061 | -0.000359 | Н  | -6.561088 | 0.068291  | 0.012428  |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| С  | 4.709927  | 0.492997  | -0.000322 | С  | -4.587587 | 0.892712  | 0.014257  |
| Н  | 5.221684  | 1.452006  | -0.000447 | Н  | -4.919454 | 1.928425  | 0.024397  |
| С  | -0.539924 | 0.876940  | 0.000003  | С  | 0.361391  | 0.855111  | -0.003254 |
| С  | -2.712721 | 0.205360  | 0.000125  | С  | 2.559971  | 0.263822  | -0.000798 |
| С  | -3.211507 | 1.508811  | 0.000104  | С  | 3.013343  | 1.583490  | -0.005676 |
| Н  | -4.278929 | 1.703386  | 0.000147  | Н  | 4.072648  | 1.817451  | -0.006395 |
| С  | -2.275543 | 2.530820  | 0.000025  | С  | 2.040820  | 2.570545  | -0.009972 |
| Н  | -2.600611 | 3.568374  | 0.000005  | Н  | 2.328796  | 3.619070  | -0.014448 |
| С  | -0.922338 | 2.219920  | -0.000025 | С  | 0.699957  | 2.211984  | -0.009023 |
| Н  | -0.178850 | 3.013264  | -0.000084 | Н  | -0.060283 | 2.989514  | -0.014851 |
| Br | -3.972745 | -1.252631 | 0.000244  | Br | 3.871352  | -1.147566 | 0.004930  |
| Ν  | 1.276330  | -0.758309 | 0.000032  | Ν  | -1.421316 | -0.852930 | -0.010919 |
| Ν  | -1.444737 | -0.119715 | 0.000081  | Ν  | 1.304645  | -0.105743 | 0.000711  |
| S  | 2.152709  | 1.699697  | -0.000242 | Ν  | -2.085113 | 1.289807  | 0.009142  |
|    |           |           |           | Н  | -2.034872 | 2.295776  | 0.023521  |
|    |           |           |           |    |           |           |           |

# Pt(Cl<sub>2</sub>)(dmso)(L1) isomer1

**Pt(Cl<sub>2</sub>)(dmso)(L1)** isomer2 E(scf) = -2463.58573193 a.u.

E(scf) = -2463.59829279 a.u.

| С | -4.045398 | 0.382818  | 1.583791  | С | -4.041503 | 2.305782  | 0.010991  |
|---|-----------|-----------|-----------|---|-----------|-----------|-----------|
| Н | -3.699795 | 0.061502  | 2.564389  | Н | -3.865604 | 2.536320  | -1.037791 |
| н | -5.135122 | 0.437301  | 1.549034  | Н | -4.552110 | 3.128538  | 0.514747  |
| н | -3.581106 | 1.336875  | 1.329384  | Н | -4.594324 | 1.368920  | 0.084843  |
| С | -4.235899 | -0.146404 | -1.087781 | С | -2.944660 | 1.858354  | 2.483388  |
| Н | -3.752181 | 0.813869  | -1.277651 | Н | -3.548614 | 0.951429  | 2.537805  |
| Н | -5.312135 | -0.038106 | -0.939290 | Н | -3.502677 | 2.737751  | 2.811092  |
| Н | -4.016278 | -0.835647 | -1.901748 | Н | -2.033721 | 1.728935  | 3.066428  |
| С | 1.614544  | -0.016304 | 0.029711  | С | 1.571855  | 0.049906  | -0.870371 |
| С | 2.836186  | -1.863392 | -0.165888 | С | 3.035429  | 1.680977  | -0.586226 |
| С | 1.470666  | -2.184853 | -0.169856 | С | 1.821763  | 2.154967  | -1.124563 |
| С | 1.048637  | -3.508991 | -0.280735 | С | 1.649524  | 3.519879  | -1.370324 |
| Н | -0.010252 | -3.750329 | -0.287821 | Н | 0.707214  | 3.889932  | -1.763852 |
| С | 2.032648  | -4.474696 | -0.404936 | С | 2.701529  | 4.364881  | -1.065632 |
| Н | 1.742740  | -5.517901 | -0.498654 | Н | 2.597105  | 5.433719  | -1.235351 |
| С | 3.397762  | -4.140847 | -0.424951 | С | 3.902961  | 3.876006  | -0.522166 |
| Н | 4.135898  | -4.930938 | -0.536698 | Н | 4.701449  | 4.576025  | -0.287531 |
| С | 3.827721  | -2.828551 | -0.307352 | С | 4.093085  | 2.526562  | -0.266017 |
| Н | 4.881976  | -2.565765 | -0.329911 | Н | 5.014855  | 2.155255  | 0.175133  |
| С | 1.225205  | 1.380797  | 0.221809  | С | 1.005421  | -1.296107 | -0.894976 |
| С | -0.379994 | 2.931634  | -0.192474 | С | -0.842128 | -2.661370 | -0.552072 |
| С | 0.214498  | 3.889270  | 0.626533  | С | -0.131716 | -3.799612 | -0.916133 |
| Н | -0.235850 | 4.865918  | 0.769761  | Н | -0.620829 | -4.767071 | -0.895711 |
|   |           |           |           |   |           |           |           |

| С  | 1.397933  | 3.526558  | 1.251855  | С  | 1.194514  | -3.656502 | -1.287204 |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н  | 1.900511  | 4.228306  | 1.912894  | н  | 1.775655  | -4.524761 | -1.586104 |
| С  | 1.921121  | 2.255003  | 1.053806  | С  | 1.769301  | -2.397251 | -1.270994 |
| Н  | 2.825007  | 1.938610  | 1.566455  | Н  | 2.805404  | -2.250107 | -1.559008 |
| Br | -2.038817 | 3.364340  | -1.072493 | Br | -2.633196 | -2.876001 | 0.018716  |
| Cl | -0.934582 | 0.100305  | 2.299367  | Cl | -2.669791 | 0.156632  | -1.912904 |
| Cl | -1.544704 | -1.901389 | -1.954197 | Cl | -0.020423 | 0.275043  | 2.027985  |
| Ν  | 0.746144  | -1.014149 | -0.050977 | Ν  | 0.940329  | 1.115008  | -1.302259 |
| Ν  | 0.093424  | 1.731350  | -0.410780 | Ν  | -0.305020 | -1.434082 | -0.547466 |
| 0  | -4.250686 | -2.108715 | 0.705497  | 0  | -1.726322 | 3.396540  | 0.690234  |
| Pt | -1.321221 | -0.896066 | 0.175398  | Pt | -1.401020 | 0.296349  | 0.079195  |
| S  | -3.542216 | -0.863662 | 0.400346  | S  | -2.438342 | 2.120221  | 0.785024  |
| Ν  | 2.902612  | -0.481849 | -0.032601 | Ν  | 2.864581  | 0.313888  | -0.438188 |
| С  | 4.096304  | 0.292919  | -0.086890 | С  | 3.761762  | -0.553932 | 0.241476  |
| С  | 5.098124  | 0.062032  | 0.852238  | С  | 5.072332  | -0.673396 | -0.217662 |
| С  | 4.247793  | 1.272389  | -1.064925 | С  | 3.328747  | -1.273696 | 1.353853  |
| С  | 6.256078  | 0.829666  | 0.816584  | С  | 5.953263  | -1.523563 | 0.439443  |
| Н  | 4.954323  | -0.701706 | 1.612917  | Н  | 5.387404  | -0.106631 | -1.091091 |
| С  | 5.404343  | 2.041159  | -1.084625 | С  | 4.214764  | -2.132230 | 1.992421  |
| Н  | 3.458854  | 1.427258  | -1.797278 | Н  | 2.309465  | -1.136368 | 1.712028  |
| С  | 6.407838  | 1.823035  | -0.145561 | С  | 5.524885  | -2.259063 | 1.540124  |
| Н  | 7.037987  | 0.655898  | 1.551497  | Н  | 6.976677  | -1.617011 | 0.083726  |
| Н  | 5.524372  | 2.809637  | -1.843883 | Н  | 3.880761  | -2.694410 | 2.861174  |
| Н  | 7.311814  | 2.426302  | -0.166171 | Н  | 6.214972  | -2.927246 | 2.049830  |
|    |           |           |           |    |           |           |           |

# **Pt(Cl₂)(dmso)(L2)** isomer1 −2252.39586805 a.u.

E(scf) = -2252.39586805 a.u.

| С | -2.489134 | -2.312153 | 1.575149  | С | -1.73 |
|---|-----------|-----------|-----------|---|-------|
| н | -1.988518 | -2.307315 | 2.541497  | Н | -1.22 |
| н | -3.238536 | -3.104381 | 1.525094  | Н | -1.82 |
| Н | -2.917639 | -1.327458 | 1.383751  | Н | -2.70 |
| С | -2.288681 | -2.676603 | -1.128341 | С | -1.67 |
| Н | -2.719226 | -1.681743 | -1.255764 | Н | -2.65 |
| Н | -3.058587 | -3.439800 | -0.999300 | Н | -1.74 |
| Н | -1.639701 | -2.908707 | -1.971519 | Н | -1.13 |
| С | 1.407917  | 1.830196  | -0.060134 | С | 1.91  |
| С | 3.559141  | 1.596220  | -0.087161 | С | 4.04  |
| С | 2.964260  | 0.337797  | -0.117007 | С | 3.39  |
| С | 3.735344  | -0.819280 | -0.155892 | С | 4.13  |
| Н | 3.267617  | -1.799230 | -0.189693 | Н | 3.63  |
| С | 5.110379  | -0.640684 | -0.165256 | С | 5.51  |
| Н | 5.757328  | -1.512825 | -0.198683 | Н | 6.13  |
|   |           |           |           |   |       |

# Pt(Cl<sub>2</sub>)(dmso)(L2) isomer2

E(scf) = -2252.38339701 a.u.

| С | -1.732231 | -3.443405 | 1.245856  |
|---|-----------|-----------|-----------|
| Н | -1.228805 | -3.219254 | 2.184514  |
| Н | -1.821785 | -4.520472 | 1.091740  |
| Н | -2.702510 | -2.945596 | 1.230194  |
| С | -1.671245 | -3.321969 | -1.490340 |
| Н | -2.650932 | -2.843198 | -1.456080 |
| Н | -1.748231 | -4.410405 | -1.457360 |
| Н | -1.134193 | -2.987883 | -2.376449 |
| С | 1.910120  | 1.379396  | 0.079025  |
| С | 4.045883  | 1.104124  | -0.001243 |
| С | 3.399660  | -0.120417 | 0.198855  |
| С | 4.138579  | -1.298707 | 0.303862  |
| Н | 3.639977  | -2.253078 | 0.447554  |
| С | 5.516894  | -1.183196 | 0.205197  |
| Н | 6.133828  | -2.075049 | 0.277931  |

| С  | 5.693229  | 0.636232  | -0.135298 | С  | 6.142629  | 0.059047  | 0.009611  |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| н  | 6.776401  | 0.723813  | -0.144018 | Н  | 7.226672  | 0.099252  | -0.060820 |
| С  | 4.925284  | 1.795367  | -0.095841 | С  | 5.417457  | 1.241008  | -0.100413 |
| Н  | 5.366678  | 2.786661  | -0.072040 | Н  | 5.896537  | 2.202686  | -0.256384 |
| С  | 0.147608  | 2.548494  | -0.019390 | С  | 0.699931  | 2.181430  | 0.036557  |
| С  | -2.101944 | 2.400147  | -0.252821 | С  | -1.611378 | 2.315116  | -0.001596 |
| С  | -2.307794 | 3.723557  | 0.141859  | С  | -1.581087 | 3.706490  | -0.028590 |
| Н  | -3.307331 | 4.140601  | 0.207287  | Н  | -2.511469 | 4.262322  | -0.054987 |
| С  | -1.180111 | 4.472214  | 0.442148  | С  | -0.350162 | 4.337450  | -0.027719 |
| Н  | -1.283369 | 5.509564  | 0.750578  | Н  | -0.290153 | 5.422198  | -0.051475 |
| С  | 0.077295  | 3.885235  | 0.364868  | С  | 0.801054  | 3.569746  | 0.004747  |
| Н  | 0.978559  | 4.436341  | 0.614567  | Н  | 1.785637  | 4.022670  | 0.009216  |
| Br | -3.631787 | 1.313490  | -0.683069 | Br | -3.303272 | 1.472646  | -0.023629 |
| Cl | -0.309463 | -0.072620 | 2.260550  | Cl | -1.015837 | -0.486174 | 2.336012  |
| Cl | 0.818820  | -1.773624 | -2.014600 | Cl | -0.339944 | -0.427082 | -2.355857 |
| Ν  | 1.590489  | 0.535008  | -0.091354 | Ν  | 2.038972  | 0.104079  | 0.252292  |
| Ν  | -0.933348 | 1.824701  | -0.350162 | Ν  | -0.509759 | 1.555309  | 0.027842  |
| 0  | -0.739826 | -4.026588 | 0.562848  | 0  | 0.567273  | -3.507180 | -0.073654 |
| 0  | 2.558407  | 2.537213  | -0.050969 | 0  | 3.088251  | 2.073825  | -0.077019 |
| Ρt | 0.177553  | -0.981554 | 0.119820  | Pt | -0.656891 | -0.582092 | -0.006995 |
| S  | -1.253418 | -2.675231 | 0.333927  | S  | -0.712475 | -2.792114 | -0.073497 |

| Pt(Cl <sub>2</sub> | )(c | lmso | )( | L3) | ) isor | mer2 |
|--------------------|-----|------|----|-----|--------|------|
|--------------------|-----|------|----|-----|--------|------|

 $Pt(Cl_2)(dmso)(L3)$  isomer 1 $Pt(Cl_2)(dmso)(L3)$  isomer 1E(scf) = -2575.36321278 a.u.E(scf) = -2575.35364030 a.u.

| С | -2.709745 | -2.042034 | 1.639578  | С | 1.954307  | -3.523740 | -0.405814 |
|---|-----------|-----------|-----------|---|-----------|-----------|-----------|
| н | -2.210994 | -1.982182 | 2.605025  | Н | 2.041112  | -3.238452 | -1.453832 |
| н | -3.493129 | -2.802350 | 1.645495  | Н | 1.898493  | -4.607950 | -0.289911 |
| н | -3.096360 | -1.058447 | 1.367777  | Н | 2.781559  | -3.096390 | 0.163055  |
| С | -2.525979 | -2.623643 | -1.024353 | С | 0.462138  | -3.354046 | 1.894345  |
| Н | -2.923335 | -1.628330 | -1.231446 | Н | 1.316336  | -2.901012 | 2.398120  |
| н | -3.319324 | -3.348048 | -0.830375 | Н | 0.514076  | -4.444483 | 1.891474  |
| н | -1.890817 | -2.943613 | -1.848380 | Н | -0.456025 | -3.005549 | 2.363883  |
| С | 1.460901  | 1.765649  | -0.057412 | С | -1.596447 | 1.706914  | -0.206337 |
| С | 3.824264  | 1.122681  | -0.178102 | С | -3.945829 | 1.111927  | 0.066673  |
| С | 2.909307  | 0.054549  | -0.153647 | С | -3.118019 | 0.162189  | -0.579720 |
| С | 3.369029  | -1.265617 | -0.174904 | С | -3.655066 | -1.056461 | -1.011448 |
| н | 2.655950  | -2.084875 | -0.156042 | Н | -3.003026 | -1.782224 | -1.489973 |
| С | 4.732676  | -1.481059 | -0.229036 | С | -4.998163 | -1.299028 | -0.795936 |
| Н | 5.108645  | -2.500281 | -0.248768 | Н | -5.432430 | -2.241647 | -1.118940 |
| С | 5.638545  | -0.411436 | -0.259667 | С | -5.811907 | -0.348220 | -0.161214 |
| н | 6.706073  | -0.612670 | -0.300716 | Н | -6.866154 | -0.564637 | -0.005240 |
| С | 5.198459  | 0.901174  | -0.233643 | С | -5.300243 | 0.862748  | 0.278286  |

| Н  | 5.900919  | 1.729635  | -0.251862 | Н  | -5.937792 | 1.589433  | 0.774545  |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| С  | 0.180321  | 2.465091  | 0.039481  | С  | -0.279682 | 2.333675  | -0.162742 |
| С  | -2.063907 | 2.339448  | -0.278186 | С  | 2.024307  | 2.087277  | -0.080788 |
| С  | -2.302462 | 3.582248  | 0.307315  | С  | 2.224126  | 3.463884  | -0.099879 |
| Н  | -3.309853 | 3.972413  | 0.407423  | Н  | 3.232807  | 3.859690  | -0.069879 |
| С  | -1.193792 | 4.283819  | 0.755645  | С  | 1.113553  | 4.288306  | -0.144600 |
| Н  | -1.318726 | 5.256446  | 1.224494  | Н  | 1.233539  | 5.368294  | -0.161785 |
| С  | 0.071071  | 3.723198  | 0.628507  | С  | -0.147836 | 3.718365  | -0.172887 |
| Н  | 0.947672  | 4.235950  | 1.016080  | Н  | -1.039752 | 4.335148  | -0.227505 |
| Br | -3.568627 | 1.306562  | -0.895890 | Br | 3.553287  | 0.977203  | 0.036725  |
| Cl | -0.293291 | -0.026282 | 2.315317  | Cl | 1.272694  | -0.809299 | -2.224795 |
| Cl | 0.472628  | -1.698125 | -2.050929 | Cl | -0.092338 | -0.217435 | 2.277163  |
| Ν  | 1.587597  | 0.459591  | -0.088640 | Ν  | -1.809499 | 0.538991  | -0.721504 |
| Ν  | -0.884454 | 1.797318  | -0.432688 | Ν  | 0.812165  | 1.519474  | -0.113605 |
| 0  | -1.025243 | -3.895436 | 0.760323  | 0  | -0.702084 | -3.490411 | -0.478187 |
| S  | 2.964832  | 2.631733  | -0.123430 | S  | -3.002850 | 2.497808  | 0.511248  |
| Pt | 0.028329  | -0.937871 | 0.146019  | Pt | 0.585759  | -0.619147 | 0.038986  |
| S  | -1.487664 | -2.545091 | 0.432845  | S  | 0.418070  | -2.818623 | 0.187069  |

### Pt(Cl<sub>2</sub>)(dmso)(L4) isomer1

E(scf) = -2232.53533388 a.u.

Pt(Cl<sub>2</sub>)(dmso)(L4) isomer2

E(scf) = -2232.51951469 a.u.

| С | -2.566725 | -2.146147 | 1.561195  | С | 0.974319  | -3.791898 | -0.897002 |
|---|-----------|-----------|-----------|---|-----------|-----------|-----------|
| н | -2.119633 | -2.077513 | 2.550939  | Н | 0.650035  | -3.562069 | -1.909949 |
| н | -3.324865 | -2.930917 | 1.525738  | Н | 0.767028  | -4.833647 | -0.644993 |
| н | -2.970242 | -1.173269 | 1.275929  | Н | 2.031476  | -3.546410 | -0.792447 |
| С | -2.237199 | -2.704305 | -1.090265 | С | 0.640983  | -3.360104 | 1.788461  |
| н | -2.650791 | -1.717673 | -1.307520 | Н | 1.710099  | -3.149344 | 1.842343  |
| Н | -3.020567 | -3.450364 | -0.942808 | Н | 0.433699  | -4.429680 | 1.861258  |
| н | -1.553935 | -2.999561 | -1.885178 | Н | 0.115220  | -2.801780 | 2.561741  |
| С | 1.405613  | 1.865441  | -0.068772 | С | -1.540091 | 1.740064  | -0.254372 |
| С | 3.614259  | 1.614576  | -0.177318 | С | -3.702650 | 1.537027  | 0.152004  |
| С | 2.980381  | 0.359873  | -0.147773 | С | -3.221517 | 0.498590  | -0.676084 |
| С | 3.724918  | -0.818731 | -0.174470 | С | -4.086937 | -0.507647 | -1.113247 |
| н | 3.226616  | -1.783983 | -0.154128 | Н | -3.714094 | -1.317186 | -1.734493 |
| С | 5.100989  | -0.691946 | -0.246730 | С | -5.405613 | -0.444917 | -0.700047 |
| н | 5.715849  | -1.587247 | -0.275126 | Н | -6.102868 | -1.218472 | -1.012280 |
| С | 5.726295  | 0.566424  | -0.288846 | С | -5.867850 | 0.593349  | 0.128063  |
| н | 6.810407  | 0.618206  | -0.347575 | Н | -6.911449 | 0.602765  | 0.433005  |
| С | 4.996735  | 1.744170  | -0.253713 | С | -5.027678 | 1.603887  | 0.570535  |
| н | 5.483469  | 2.715751  | -0.281761 | Н | -5.392066 | 2.401070  | 1.214261  |
| С | 0.105083  | 2.514949  | 0.026101  | С | -0.203927 | 2.315344  | -0.186015 |
| С | -2.129016 | 2.308517  | -0.309468 | С | 2.089753  | 2.004158  | -0.033288 |

| С  | -2.418543 | 3.533065  | 0.292205  | С  | 2.326950  | 3.375511  | -0.033734 |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н  | -3.440847 | 3.881929  | 0.392957  | Н  | 3.344684  | 3.742577  | 0.033516  |
| С  | -1.341319 | 4.269310  | 0.760125  | С  | 1.241892  | 4.231199  | -0.107532 |
| Н  | -1.507272 | 5.227000  | 1.247029  | Н  | 1.393295  | 5.307544  | -0.115582 |
| С  | -0.055414 | 3.757699  | 0.635545  | С  | -0.033925 | 3.696596  | -0.177531 |
| Н  | 0.793283  | 4.289363  | 1.059289  | Н  | -0.906460 | 4.336791  | -0.267973 |
| Br | -3.592133 | 1.226700  | -0.940927 | Br | 3.577465  | 0.852806  | 0.158800  |
| Cl | -0.346116 | 0.059865  | 2.258733  | Cl | 1.418570  | -0.875056 | -2.155274 |
| Cl | 0.869615  | -1.832340 | -1.915225 | Cl | -0.369380 | -0.177640 | 2.184207  |
| Ν  | 1.613376  | 0.557964  | -0.082936 | Ν  | -1.875250 | 0.659198  | -0.915831 |
| Ν  | -0.929093 | 1.813625  | -0.466523 | Ν  | 0.863461  | 1.471619  | -0.116480 |
| 0  | -0.791217 | -3.947476 | 0.764419  | 0  | -1.399336 | -3.165126 | 0.099567  |
| Ν  | 2.590993  | 2.538630  | -0.108032 | Ν  | -2.609529 | 2.347760  | 0.371881  |
| Pt | 0.192315  | -0.941615 | 0.168966  | Pt | 0.504831  | -0.628863 | 0.012260  |
| S  | -1.270797 | -2.608316 | 0.416356  | S  | 0.008097  | -2.777068 | 0.217073  |
| Н  | 2.682309  | 3.535802  | -0.225809 | Н  | -2.530829 | 3.023816  | 1.117493  |

# Pt(Cl<sub>2</sub>)(L1)

E(scf) = -1910.33717298 a.u.

| С  | 1.227464  | -0.123429 | -0.036780 | С  | 1.227683  | 1.547074  | -0.199727 |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| С  | 2.768534  | 1.431799  | 0.302242  | С  | 3.364138  | 1.505945  | 0.014914  |
| С  | 1.487979  | 2.001901  | 0.425319  | С  | 2.869623  | 0.219424  | 0.249100  |
| С  | 1.340741  | 3.350935  | 0.755511  | С  | 3.734858  | -0.821876 | 0.576765  |
| Н  | 0.352735  | 3.786492  | 0.851632  | Н  | 3.354375  | -1.821403 | 0.754175  |
| С  | 2.499445  | 4.084127  | 0.938988  | С  | 5.083843  | -0.505973 | 0.645166  |
| Н  | 2.423158  | 5.137633  | 1.194535  | Н  | 5.795537  | -1.288219 | 0.894764  |
| С  | 3.773971  | 3.504874  | 0.810296  | С  | 5.559631  | 0.790866  | 0.400759  |
| Н  | 4.655875  | 4.120525  | 0.968721  | Н  | 6.626770  | 0.986088  | 0.466249  |
| С  | 3.934367  | 2.165055  | 0.496272  | С  | 4.702340  | 1.837139  | 0.079222  |
| Н  | 4.915621  | 1.705681  | 0.409824  | Н  | 5.055382  | 2.846171  | -0.107811 |
| С  | 0.478355  | -1.339049 | -0.230849 | С  | -0.115540 | 2.009217  | -0.336666 |
| С  | -1.623366 | -2.265458 | 0.136874  | С  | -2.316855 | 1.418341  | 0.044671  |
| С  | -1.145314 | -3.538971 | -0.168830 | С  | -2.726033 | 2.726993  | -0.223914 |
| Н  | -1.812264 | -4.388567 | -0.073395 | Н  | -3.777095 | 2.974695  | -0.124017 |
| С  | 0.169707  | -3.687633 | -0.572475 | С  | -1.791177 | 3.683736  | -0.580459 |
| Н  | 0.552593  | -4.665763 | -0.850102 | Н  | -2.101668 | 4.701469  | -0.798799 |
| С  | 1.006818  | -2.581675 | -0.558244 | С  | -0.451402 | 3.328850  | -0.594699 |
| Н  | 2.057363  | -2.678777 | -0.804278 | Н  | 0.337049  | 4.048759  | -0.789757 |
| Br | -3.341753 | -2.140833 | 0.897331  | Br | -3.607333 | 0.247717  | 0.754132  |
| Cl | -3.570228 | 0.546364  | -1.014125 | Cl | -1.951398 | -2.174217 | -0.766534 |
| Cl | -1.761933 | 3.106177  | -0.491015 | Cl | 1.093326  | -2.841683 | -0.154877 |
| Ν  | 0.557248  | 1.006264  | 0.205396  | Ν  | 1.487444  | 0.292657  | 0.099963  |
|    |           |           |           |    |           |           |           |

## Pt(Cl<sub>2</sub>)(L2)

E(scf) = -1699.13567256 a.u.

| Ν  | -0.873711 | -1.156665 | -0.004486 |
|----|-----------|-----------|-----------|
| Pt | -1.422620 | 0.846690  | -0.185129 |
| Ν  | 2.582907  | 0.087736  | 0.011654  |
| С  | 3.647259  | -0.857420 | -0.094270 |
| С  | 4.484663  | -0.813246 | -1.204716 |
| С  | 3.851947  | -1.789814 | 0.919288  |
| С  | 5.528385  | -1.725900 | -1.307467 |
| Н  | 4.307220  | -0.071904 | -1.980215 |
| С  | 4.890249  | -2.705275 | 0.801955  |
| Н  | 3.192310  | -1.796573 | 1.783974  |
| С  | 5.726946  | -2.675182 | -0.310232 |
| Н  | 6.182873  | -1.698548 | -2.174784 |
| Н  | 5.050844  | -3.439822 | 1.586870  |
| Н  | 6.540125  | -3.391434 | -0.397141 |

# Pt(Cl<sub>2</sub>)(L3)

E(scf) = -2022.10542201 a.u. E(scf) = -1679.27493551 a.u.

С

С

С

С

Н

С

Н С

Н

С

Н С

С С

Н

С

Н С

Н

Br

Cl

Cl Ν

Ν

S

| Ν  | -1.040682 | 1.013777  | -0.099500 |
|----|-----------|-----------|-----------|
| 0  | 2.308878  | 2.343787  | -0.270380 |
| Pt | -0.139634 | -0.899758 | -0.119441 |

### Pt(Cl<sub>2</sub>)(L4)

| 1.144662  | 1.536419  | 0.284526  | С  | -1.207562 | 1.600760  | -0.235148 |
|-----------|-----------|-----------|----|-----------|-----------|-----------|
| 3.531728  | 1.240573  | -0.093882 | С  | -3.405432 | 1.528295  | 0.023917  |
| 2.750817  | 0.091480  | -0.337110 | С  | -2.849591 | 0.256101  | 0.278905  |
| 3.354508  | -1.070154 | -0.829196 | С  | -3.664734 | -0.811612 | 0.658618  |
| 2.748011  | -1.944083 | -1.035373 | Н  | -3.232210 | -1.786553 | 0.852157  |
| 4.722275  | -1.062454 | -1.028008 | С  | -5.022272 | -0.564765 | 0.756909  |
| 5.206409  | -1.957866 | -1.408324 | Н  | -5.687131 | -1.373777 | 1.047169  |
| 5.494753  | 0.073714  | -0.752743 | С  | -5.567371 | 0.703415  | 0.492282  |
| 6.569101  | 0.047311  | -0.916259 | Н  | -6.640795 | 0.849477  | 0.581948  |
| 4.909382  | 1.240895  | -0.290159 | С  | -4.770298 | 1.775280  | 0.125256  |
| 5.503961  | 2.129214  | -0.096196 | Н  | -5.191902 | 2.757609  | -0.071113 |
| -0.226209 | 1.954798  | 0.401925  | С  | 0.156592  | 2.014692  | -0.378951 |
| -2.401054 | 1.348000  | -0.137681 | С  | 2.338763  | 1.372966  | 0.064494  |
| -2.856136 | 2.630328  | 0.167212  | С  | 2.799547  | 2.653580  | -0.243775 |
| -3.902975 | 2.865945  | 0.010373  | Н  | 3.855751  | 2.870979  | -0.129671 |
| -1.962214 | 3.580022  | 0.633532  | С  | 1.902506  | 3.622747  | -0.658563 |
| -2.305382 | 4.579076  | 0.886826  | Н  | 2.248673  | 4.620228  | -0.913835 |
| -0.618424 | 3.250614  | 0.707828  | С  | 0.552457  | 3.309521  | -0.680900 |
| 0.128150  | 3.987969  | 0.989689  | Н  | -0.190150 | 4.062811  | -0.929787 |
| -3.599013 | 0.183707  | -1.005252 | Br | 3.563136  | 0.190527  | 0.866750  |
| -2.086192 | -2.094011 | 0.887280  | Cl | 1.944138  | -2.148100 | -0.821434 |
| 0.949717  | -2.863808 | 0.483265  | Cl | -1.111527 | -2.811167 | -0.260337 |
| 1.402971  | 0.289334  | -0.085665 | Ν  | -1.479714 | 0.341997  | 0.103696  |
| -1.126558 | 0.965674  | 0.073320  | Ν  | 1.053029  | 1.003696  | -0.099814 |
| 2.528048  | 2.568558  | 0.415553  | Ν  | -2.344370 | 2.348472  | -0.302865 |

|      | P+(Cl_)       |              | mor1      |     |
|------|---------------|--------------|-----------|-----|
| E(sc | f) = -2012.45 | 5613661 a.u. |           | E(s |
| C    | 2,729061      | 0.291236     | -0.104325 | C   |
| C    | 3.916675      | -1.513129    | -0.151271 | н   |
| C    | 2.566476      | -1.853539    | -0.122686 | C   |
| C    | 2.165626      | -3.185420    | -0.131964 | н   |
| Н    | 1.111092      | -3.447375    | -0.129972 | н   |
| C    | 3.176679      | -4.134248    | -0.166660 | C   |
| Н    | 2.914343      | -5.188471    | -0.179451 | Н   |
| С    | 4.532489      | -3.771978    | -0.190030 | Н   |
| н    | 5.288827      | -4.552095    | -0.215982 | С   |
| С    | 4.938389      | -2.441404    | -0.184386 | н   |
| Н    | 5.983868      | -2.151467    | -0.204255 | н   |
| С    | 2.460197      | 1.714454     | -0.077782 | С   |
| С    | 0.836523      | 3.299671     | -0.153195 | н   |
| С    | 1.744946      | 4.336607     | 0.078208  | Н   |
| Н    | 1.408506      | 5.366221     | 0.144075  | С   |
| С    | 3.080907      | 3.993517     | 0.215917  | Н   |
| Н    | 3.824626      | 4.766241     | 0.392713  | Н   |
| С    | 3.459092      | 2.657931     | 0.144370  | С   |
| Н    | 4.492164      | 2.349010     | 0.271789  | Н   |
| Br   | -1.023152     | 3.713568     | -0.331769 | Н   |
| Cl   | 0.057274      | 0.356852     | 2.319772  | С   |
| Cl   | -0.381348     | -1.469426    | -2.023132 | Н   |
| Ν    | 1.845128      | -0.669946    | -0.081699 |     |
| Ν    | 1.168366      | 2.036563     | -0.250353 |     |
| 0    | 4.008489      | -0.142153    | -0.142114 |     |
| Pt   | -0.268710     | -0.537084    | 0.151889  | E(s |
| С    | -2.122222     | -1.335158    | 0.821337  |     |
| Н    | -1.969576     | -1.412053    | 1.900805  | 0   |
| С    | -2.661690     | -2.568282    | 0.168009  | S   |
| Н    | -1.980915     | -3.415397    | 0.315643  | С   |
| Н    | -2.734114     | -2.431077    | -0.914204 | Н   |
| С    | -4.037639     | -2.900844    | 0.757237  | Н   |
| Н    | -4.461423     | -3.736354    | 0.184025  | Н   |
| Н    | -3.917228     | -3.275501    | 1.782933  | С   |
| С    | -5.028279     | -1.737778    | 0.774380  | Н   |
| Н    | -4.703055     | -0.988260    | 1.509573  | Н   |
| Н    | -5.977064     | -2.120423    | 1.169000  | н   |

-0.232179 -0.905408

Ρt

0.186332

| Pt | 0.130676  | -0.875926 | -0.141166 |
|----|-----------|-----------|-----------|
| н  | -2.397365 | 3.335515  | -0.497424 |

cis-cyclooctene (coe)

E(scf) = -313.270248284 a.u.

| С | 0.563765  | -1.639860 | -0.310514 |
|---|-----------|-----------|-----------|
| Н | 1.118306  | -2.286266 | -0.993250 |
| С | 1.361557  | -0.831100 | 0.659209  |
| Н | 2.221133  | -1.403872 | 1.028103  |
| Н | 0.753673  | -0.604646 | 1.545037  |
| С | 1.860731  | 0.486474  | 0.053292  |
| Н | 2.343410  | 1.071746  | 0.848335  |
| Н | 2.651423  | 0.277544  | -0.680286 |
| С | 0.781194  | 1.329990  | -0.619180 |
| Н | 0.463846  | 0.842155  | -1.550008 |
| Н | 1.248066  | 2.270868  | -0.935377 |
| С | -0.458986 | 1.637946  | 0.234911  |
| Н | -0.205894 | 1.569570  | 1.304097  |
| Н | -0.739164 | 2.687680  | 0.083786  |
| С | -1.706817 | 0.798268  | -0.044676 |
| Н | -1.943773 | 0.856604  | -1.116896 |
| Н | -2.556707 | 1.268925  | 0.467650  |
| С | -1.655349 | -0.673503 | 0.382680  |
| Н | -1.357022 | -0.718873 | 1.439697  |
| Н | -2.674326 | -1.077607 | 0.352788  |
| С | -0.759642 | -1.545880 | -0.448699 |
| Н | -1.241688 | -2.127843 | -1.235810 |
|   |           |           |           |

### DMSO

E(scf) = -553.210174289 a.u.

| 0 | 0.000506  | 1.478427  | 0.394134  |
|---|-----------|-----------|-----------|
| S | 0.000041  | 0.249345  | -0.441992 |
| С | -1.340777 | -0.813789 | 0.177923  |
| Н | -1.252037 | -0.904560 | 1.262797  |
| Н | -2.282266 | -0.322592 | -0.070053 |
| Н | -1.301647 | -1.794923 | -0.300764 |
| С | 1.340305  | -0.814555 | 0.177878  |
| Н | 2.282123  | -0.324273 | -0.070630 |
| Н | 1.300201  | -1.795945 | -0.300185 |
| Н | 1.251746  | -0.904581 | 1.262831  |

| С | -5.276589 | -1.047569 | -0.576864 |
|---|-----------|-----------|-----------|
| Н | -4.999616 | -1.723278 | -1.399805 |
| Н | -6.354521 | -0.885907 | -0.698090 |
| С | -4.588265 | 0.302603  | -0.782706 |
| Н | -4.843404 | 0.968818  | 0.055151  |
| Н | -5.018361 | 0.778035  | -1.673514 |
| С | -3.068296 | 0.258609  | -0.970543 |
| Н | -2.816354 | -0.469863 | -1.746406 |
| Н | -2.720084 | 1.224363  | -1.354382 |
| С | -2.336205 | -0.036683 | 0.308523  |
| Н | -2.338381 | 0.775553  | 1.039846  |
|   |           |           |           |

### Pt(Cl<sub>4</sub>)<sup>2-</sup>

### E(scf) = -1960.19517986 a.u.

| 0.000000  | 0.000000                                                  | 0.000000                                                                           |
|-----------|-----------------------------------------------------------|------------------------------------------------------------------------------------|
| 0.000000  | 2.401011                                                  | 0.000000                                                                           |
| 2.401011  | 0.000000                                                  | 0.000000                                                                           |
| 0.000000  | -2.401011                                                 | 0.000000                                                                           |
| -2.401011 | 0.000000                                                  | 0.000000                                                                           |
|           | 0.000000<br>0.000000<br>2.401011<br>0.000000<br>-2.401011 | 0.0000000.0000000.0000002.4010112.4010110.0000000.000000-2.401011-2.4010110.000000 |

### References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Rev.C.01 Gaussian, Inc., Wallingford CT, 2010.
- 2. Y. Zhao and D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101: 1-18.
- a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 284-287; b) L. E. Roy, P. J. Hay, and R. L. Martin, *J. Chem. Theory Comput.* **2008**, *4*, 1029-1031; (c) C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert and L. S. Sunderlin, *J. Phys. Chem. A* **2001**, *105*, 8111-8115.

- 4. a) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, *7*, 3297-3305; b) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, *8*, 1057-1065.
- 5. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.