In Situ Synthesis of C-doped BiVO₄ with Natural Leaf as Template under

Different Calcination Temperature

Ruijie Yang,^{a,b} Rongshu Zhu,^{a,b**} Yingying Fan,^{a,b} Longjun Hu^{a,b} and Qianqian Chen^{a,b}

Preparation of BiVO₄ impregnation solution: The BiVO₄ impregnation solution was prepared as follows:¹ (1) 19.4 g Bi(NO₃)₃·5H₂O was dissolved in a mixture containing 80 mL ethanol and 60 mL glycerol at 70 °C with magnetic stirring; (2) 4.68g NH₄VO₃ was dissolved in 20 mL TMAH with gently shaking; (3) these two solutions were mixed together at 70 °C. After doing this operation, large amounts of yellow deposit appeared, added concentrated nitric acid (65%) timely until the solution became transparent.

Morphology and microstructure analysis. The morphologies of $CNSiBiVO_4$ were observed by FE-SEM (Fig. S1). In Fig. S1, the tubular structure (Fig. S1a and b); surface porous structure (Fig. S1c-f); side section structure (Fig. S1g) and inside section structure (Fig. S1h and i) being consist of crystal particles, can be seen, clearly. These results indicate that $CNSiBiVO_4$ has copied the multi-level structure of natural leaf successfully.

XPS analysis: The XPS patterns of CNSiBiVO₄ and BiVO₄ were analyzed to identify there elemental composition and chemical state. As shown in Fig. S2A, the XPS survey spectrum confirms the presence of Bi, V, O, Si, N and C elements. In Fig. S2B and C, the peaks with binding energies of 103.5 eV and 405.5 eV in the XPS spectrum of $CNSiBiVO_4$ can be attributed to Si 2p (103.4 eV) and N 1s (405.5 eV),² while these peaks are not appear in the spectrum of BiVO₄. These results indicate that, parts of the original Si and N element of the leaf were doped in $CNSiBiVO_4$ in the calcination process, and the Si element is present at Si^{4+,2} As displayed in Fig. S2D, the peaks with binding energies of 284.4 eV and 286.0 eV can be attributed to C-C bond (comes from carbon tape) and C-V bond (doped into CNSiBiVO₄ lattice), which confirms C element doped in CNSiBiVO₄, similar to Si and N elements. Fig. S2E shows the XPS spectra of Bi in BiVO₄ and CNSiBiVO₄. Each spectrum has two major peaks with binding energies at about 159.4 eV or 159.3 eV and 164.6 eV or 164.5 eV which correspond to Bi $4f_{7/2}$ and Bi $4f_{5/2}$, respectively, demonstrating that the valence state of Bi in the BiVO₄ and CNSiBiVO₄ are +3.^{3, 4, 5} In Fig. S2F, V 2p shows binding energy at 524.4 or 524.3 eV for V $2p_{1/2}$.^{6,7} And the other two peaks at around 516.7 or 516.6 and 517.4 or 517.2 eV were attributed to V⁴⁺ and V⁵⁺, respectively.^{8,9} It is noteworthy that, for BiVO₄, the ratio of V⁴⁺ to V⁵⁺ is 1.08, by contrast, in case of CNSiBiVO₄, the ratio is 1.63, which probably owing to V⁵⁺ was replaced by Si⁴⁺, because Si⁴⁺ (0.41 nm) has a close ion radius with V⁵⁺ (0.59 nm).² The decrease of V⁵⁺ lead to the oxygen vacancy increase,¹⁰ which can inhibit the recombination of photogenerated electrons and holes. Fig. S2G displays the O 1s spectrum of BiVO₄ and CNSiBiVO₄, which can be divided into two peaks located at 229.9 eV or 229.6 and 231.4 or 231.3 eV, corresponding to lattice oxygen (Olatt) and surface adsorption oxygen (Oabs), respectively.^{11,12} For BiVO₄, the ratio of Oabs to Olatt is 0.53, by contrast, in case of CNSiBiVO₄, the ratio is 1.31. The production of oxygen vacancy is closely related to surface adsorption oxygen. These results indicate that CNSiBiVO₄ has more oxygen vacancy compare with BiVO₄, which is consistent with the inference of V 2p.

P. R. China.

^a. Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.

b. International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology (Shenzhen), Shenzhen 518055,

E-mail: rszhu@hit.edu.cn.

Fig. S1. FE-SEM images of the as-preepared CNSiBiVO₄. (a and b) the vein section of CNSiBiVO₄; (c-f) the surface section of CNSiBiVO₄; (g) the side section of the CNSiBiVO₄; (h-i) the inside section of CNSiBiVO₄.

Fig. S2. XPS spectra of the as-prepared $BiVO_4$ and $CNSiBiVO_4$: (A) survey spectrum of $CNSiBiVO_4$; (B) Si 2p; (C) N 1s; (D) C 1s; (E) Bi 4f; (F) V 2p and (G) O2p.

Elt.	Line	Intensity	Atomic	Conc	Units	Error	MDL	
		(c/s)	%			2-sig	3-sig	
С	Ка	60.54	9.780	2.577	wt.%	0.142	0.163	
N	Ка	32.91	8.126	2.497	wt.%	0.202	0.246	
0	Ка	328.45	55.512	19.483	wt.%	0.341	0.237	
Si	Ка	21.97	0.358	0.220	wt.%	0.048	0.070	
Са	Ка	69.60	0.987	0.868	wt.%	0.058	0.077	
V	Ка	757.28	11.925	13.325	wt.%	0.153	0.105	
Bi	La	133.56	13.313	61.029	wt.%	2.008	2.054	
			100.000	100.000	wt.%			Total

Fig. S3. The EDS for $BiVO_4$ -600.

References

- 1. R. Yan, M. Chen, H. Zhou, T. Liu, X. Tang, K. Zhang, H. Zhu, J. Ye, D. Zhang and T. Fan, *Sci Rep*,2016, **6**, 20001.
- 2. X. Zhang, X. Quan, S. Chen and Y. Zhang, *Journal of hazardous materials*, 2010, **177**, 914-917.
- 3. S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanpää and M. Swaminathan, Industrial & Engineering Chemistry Research, 2014, **53**, 8346-8356.
- 4. J. Choi, P. Sudhagar, J. H. Kim, J. Kwon, J. Kim, C. Terashima, A. Fujishima, T. Song and U. Paik, Physical chemistry chemical physics : PCCP, 2017, 19, 4648-4655.
- 5. Y. Deng, L. Tang, G. Zeng, C. Feng, H. Dong, J. Wang, H. Feng, Y. Liu, Y. Zhou and Y. Pang, *Environ. Sci.: Nano*, 2017, **4**, 1494-1511.
- 6. M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. Van Tendeloo and B.-L. Su, J. Mater. Chem. A, 2015, **3**, 21244-21256.
- 7. Y. Zhang, Y. Guo, H. Duan, H. Li, C. Sun and H. Liu, Physical chemistry chemical physics : PCCP, 2014, 16, 24519-24526.
- 8. J. Sun, X. Li, Q. Zhao, J. Ke and D. Zhang, The Journal of Physical Chemistry C, 2014, 118, 10113-10121.
- 9. Z. Wang, J. Xuan, B. Liu and J. He, Journal of Industrial Textiles, 2013, 44, 868-883.
- 10. M. Wang, Q. Liu, Y. Che, L. Zhang and D. Zhang, Journal of Alloys and Compounds, 2013, 548, 70-76.
- 11. X. Wu, J. Zhao, S. Guo, L. Wang, W. Shi, H. Huang, Y. Liu and Z. Kang, Nanoscale, 2016, 8, 17314-17321.
- 12. S. H. Yun, P. G. Ingole, W. K. Choi, J. H. Kim and H. K. Lee, J. Mater. Chem. A, 2015, 3, 7888-7899.