
RSC Advances S1

Electronic Supplementary Information for

New scaling relations to compute atom-in-material polarizabilities and

dispersion coefficients: part 2. Linear-scaling computational algorithms and

parallelization

Thomas A. Manz1* and Taoyi Chen1
1Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces,

New Mexico, 88003-8001.

*Corresponding author email: tmanz@nmsu.edu

Contents

S1. Proof that force-field, non-dir(u), low_freq, and screened(u) are ≥ 0

S2. Derivations and proofs related to the failproof conjugate residual (FCR) algorithm

S3. Proof the wp lookup table method yields error proportional to the increment squared

S4. Linear-scaling algorithm for setting up the lists of interacting atom pairs

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2019

mailto:tmanz@nmsu.edu

RSC Advances S2

S1. Proof that force-field, non-dir(u), low_freq, and screened(u) are ≥ 0

 Incremental non-directional screening takes the form

    
 

   
       

unscreened

AA A A Ab b

j 1 j j j non dir, j junscreened unscreened
b small_ list A B

2 u
u u u u u

u u
 



  
              

 (S1)

where
j is the screening increment. Eqn (S1) can be factored to give

    
      

   

unscreened Ab b

A j non dir, j jA A

j 1 j unscreened unscreened
b small _ list A B

2 u u u
u u 1

u u







     
     

   
  

 (S2)

Since the MCLF method corresponds to the limit
j 0  , we have

      

   j

unscreened Ab b

A j non dir, j j

unscreened unscreened0
b small _ list A B

2 u u u
lim 1 0

u u



 


     
   

   
  

 (S3)

Combining eqn (S2) and (S3) gives

 

 j

A

j 1

A0
j

u
lim 0

u



 

 
   

 (S4)

Hence,  A

j 1 u and  A

j u have the same sign. Since    A unscreened

j 1 Au u 0   , it follows that

 A

j u 0  for all values of j. Since  non dir

A u corresponds to the final value of j in the limit

j 0  , it necessarily follows that

  non dir

A u 0  (S5)

Since  force field non dir

A A u Nimfreqs    , then force field

A 0  .

 Incremental directional screening to compute  screened

A u takes the form

           Ab Ab Ab A Ab b

j MBS cutoff j j jM1 f f u u u u      (S6)

      A AB B

j j jM2 u h u u    (S7)

   
 

   
 

 

   
 

non dir

AA A T

j 1 j non dir non dir
b small _ list A B

non dir

A T

non dir non dir
B large _ list A B

u
u u M1 M1

u u

u
M2 M2

u u



  




 


  
           

  
        





 (S8)

where M1 and M2 are square matrices with 3 rows and

 
            

2

Ab Ab Ab
j 3 2 3

AB, j AB, jAb Ab AB, j AB, j

d d1 2 1 2
u erfc exp

u ud d u 3 u

                                      

 (S9)

RSC Advances S3

     A A

j ju trace u / 3   (S10)

 Eqn (S8) can be factored to give

               A A A A A A

j 1 j j j j j j j j

symmetric

u u I M3 I M3 u u u M3 M3½ ½ ½ u

 
              
 
 

 (S11)

where M3 is some finite matrix. Since M3 remains finite, then in the limit
j 0  the

eigenvalues of  jI M3 must approach 1. Since the determinant of a matrix is the product of

its eigenvalues,

  jdet I M3 0  (S12)

for sufficiently small finite
j . Since the determinant of the product of two matrices is the

product of their determinants, then from eqn (S12) it follows that

              A A A

j j j j j jdet u I M3 det I M3 u det I M3 det u        (S13)

has the same sign as   A

jdet u . Hence, for sufficiently small finite
j , the eigenvalues of

  A

j ju I M3  and    A

j jI M3 u  must have the same signs as the eigenvalues of

 A

j u . Since  jdet I M3 is not close to zero for sufficiently small finite
j (eqn (S12)),

then none of the eigenvalues of   A

j ju I M3  and    A

j jI M3 u  can be zero if none of

the eigenvalues of  A

j u are zero. By definition, a real-valued matrix M is positive definite if

and only if

Tz Mz 0 (S14)

for every non-zero vector z. A real-valued matrix is positive definite if and only if its symmetric

part has all positive eigenvalues.1 Taken together, the above results show that when  A

j u is

positive definite, then   A

j ju I M3  and    A

j jI M3 u  are also positive definite for

sufficiently small finite
j . The sum of two positive definite matrices M M M   is always

positive definite:

  T T T

0 0

z M M z z M z z M z 0
 

       (S15)

Since  A

j 1 u is one-half the sum of   A

j ju I M3  and    A

j jI M3 u  , it follows that

 A

j 1 u is positive definite if   A

j ju I M3  and    A

j jI M3 u  are positive definite.

Therefore,  A

j 1 u is positive definite when  A

j u is positive definite for sufficiently small

finite
j .

RSC Advances S4

 The directional screening process starts with

  

 

 

 

non dir

A

A non dir

j 1 A

non dir

A

u 0 0

u 0 u 0

0 0 u









 
 

   
  

 (S16)

and ends with  screened

A u as one-third the trace of the tensor on the left-side of eqn (S8) after the

last screening increment finishes. Therefore,

      
3

A non dir

j 1 Adet u u 0

    (S17)

and the eigenvalues of  A

j 1 u are  non dir

A u 0  . There are two cases. Case 1: If

 non dir

A u 0  , then all eigenvalues of  A

j 1 u are zero, and by eqn (S11) the limit
j 0 

gives  A

j 1 u 0  and hence  screened

A u 0  . Case 2: If  non dir

A u 0  , then all eigenvalues of

 A

j 1 u are > 0 (i.e.,  A

j 1 u is positive definite), and by the analysis of the prior paragraph,

 A

j 1 u is also positive definite for sufficiently small finite
j . Since the trace is the sum of

eigenvalues, all positive eigenvalues yields positive trace. Thus,

  screened

A u 0  (S18)

in all cases. Since  low _freq screened

A A u Nimfreqs   , then low _freq

A 0  .

S2. Derivations and proofs related to the failproof conjugate residual (FCR) algorithm

S2.1 Problem definition and matrix conditioning

 FCR solves any linear equation system with Hermitian coefficients matrix

 Ax B (S19)

for an exact solution (within the convergence tolerance) if one exists or for a conditioned least-

squares solution if no exact solution exists. The matrices x and B may contain a single column

or more than one column. Matrix A is non-singular if and only if its determinant is nonzero

(i.e., all of its eigenvalues are non-zero). In this case, matrix A is invertible and the equation

Ax B has the unique solution
1x A B . If matrix A is singular, then Ax B has either no

solution or an infinite number of solutions. If the linear equation system is consistent (i.e., has at

least one solution), this FCR algorithm returns one of its solutions. When matrix B has more

than one column, the FCR algorithm is applied separately to each column. When B = I (identity

matrix), the method solves for
1x A , the inverse of matrix A .

 The goal of conditioning is to rotate and scale matrix A to improve convergence speed:

HM C C A (S20)

  H

0My C C y C W   A B Ax (S21)

where

H

0C y x x (S22)

RSC Advances S5

Here, 0x is any initial guess for x . This shift always makes y0=0 as the initial guess for y. The

conditioning matrix C must be non-singular. Since A is Hermitian, the matrix M will

automatically be Hermitian for any conditioning matrix C:

    
H H

H H H H H HM C C C C C C M   A A A (S23)

As shown in Section 2.2 below, the algorithm’s convergence speed is largely affected by matrix

M’s eigenspectrum. As with other conjugate gradient methods, convergence is most rapid if the

eigenvalues are clustered together.2 Thus, conditioning’s primary goal is to make the

eigenspectrum more clustered together.2

In this article, the dot project of two vectors v and w is defined as

  
TH *

i i

i

v w v w v* w v w   (S24)

A Hermitian matrix M = MH can be freely moved between sides of the dot product. For example,

 H 2MMq p Mq Mp q MMp q M p   (S25)

As commonly known, the Hermitian conjugate of a matrix product follows

  
H H H    (S26)

 If the linear equation system (i.e., eqn (S19)) is inconsistent (i.e., has no exact solution),

this FCR algorithm returns a statement that the linear equation system has no exact solution

along with a value y = yFCR that minimizes the least-squares problem

2

Minimize F z z W My   (S27)

This represents a best possible choice for y irrespective of whether an exact solution to eqn

(S19) exists. There are some applications where this least-squares fit has utility even if an exact

solution to eqn (S19) does not exist. (Note: The case where My=W is consistent arises as the

special case of eqn (S27) where the least-squares error is simply zero.)

 As commonly defined, the kernel of M is the set of all y values that solve My=0,

  kernel M My 0  (S28)

When M is non-singular, y=0 is the only vector in the kernel. When M is singular, the kernel

includes y=0 along with an infinite number of non-zero vectors. Manifestly, any vector from the

kernel of M can be added to yFCR without changing the conditioned residual value. Therefore, the

set of all equally good (aka ‘best’) solutions to eqn (S27) is

  all FCRy y span kernel M     (S29)

If the kernel(M) is known, this allows calculating the entire set of  ally that give the same

minimum value of F. If My=W is consistent, this is the set of y values yielding F=0 (i.e.,

satisfying eqn (S21)). The number of vectors in  ally is one if M is non-singular; otherwise,

 ally contains an infinite number of vectors.

RSC Advances S6

S2.2 Eigenvalue decomposition analysis using Krylov subspaces

S2.2.1 Mathematical formalism

 The method optimizes the conditioned residuals

         i i i i
z W My Cr C B    Ax (S30)

where enclosed subscripts refer to the iteration number. A Krylov subspace is defined as

   2 3 n 1

nK M,W W Wspan W,MW, M ,M , M W
     (S31)

In each iteration,  i
y is chosen from the Krylov subspace

    i

2iy K M,W (S32)

to minimize the norm

      i i i
z z  (S33)

Since  0
z W , from eqn (S30) – (S32) it follows that

    2i 1

i
K ,z M W (S34)

 Convergence analysis can be obtained by expanding W in terms of the eigenvectors  jV

of M:

j j

j

W c V (S35)

The building blocks of the Krylov subspace are thus

  
k

k

j j j

j

M W c V  (S36)

where  j are the corresponding eigenvalues of M. These building blocks can generate at most

 linearly independent vectors, where W is a linear combination of eigenvectors of M having

exactly  distinct eigenvalues
j .

 FCR expands
 i

y as

      i i2i 1

0 1 2i 1 j j j

j

y a W a MW ...a M W c Poly V

     (S37)

     i i2 2i

0 1 2i 1 j j j j

j

My a MW a M W ...a M W c Poly V      (S38)

             i i i i

j j j j j j j j j j

j j j

z W My c V c Poly V c V 1 Poly           (S39)

where  ka are some optimized coefficients and

      
2i 1

ki

k

k 0

Poly a




   (S40)

is the associated polynomial. Examining eqn (S39), an exact solution is reached if

   i

j jPoly 1/   (S41)

RSC Advances S7

The FCR convergence properties are thus dictated by the difficulty of representing  j1/  via a

polynomial    i
Poly  . When the eigenvalues are close to one, this is trivial because

 

j

2 3 4

j j j j

j

1
1 ...

1 1



       
  

 (S42)

When the eigenvalues are extremely spread out in values, then it takes a higher-order polynomial

(and hence a larger number of FCR iterations) to make
   i

Poly 1/   for all of the

eigenvalues contributing to W (eqn (S35)). Thus, the primary goal of conditioning (eqn (S20)) is

to make the eigenvalues less spread out in values.

 Combining eqn (S31) and (S35) means the Krylov subspaces can be expanded in terms of

eigenvalues as

    
n 1

k

n j j k j

j k 0

K M, W span c V b




 
  

 
  (S43)

where span refers to the space generated by all possible  kb values.

S2.2.2 Non-singular coefficients matrix

 The matrix M is non-singular if and only if all of its eigenvalues are non-zero:
j 0  for

every j. Every non-singular matrix M is invertible. Therefore, the linear equation system My=W

is consistent and has the unique solution: y = M-1W.

 For non-singular matrices in exact arithmetic, FCR converges to the exact solution in at

most ceiling( /2) iterations. This follows immediately from eqn (S37) and (S41). Specifically,

the exact solution occurs when
   i

j jPoly 1/   for j = 1, 2, …  distinct eigenvalues. A

polynomial containing  coefficients (e.g., a0, a1, … a(Ξ-1)) can obviously be fit to pass through

exactly  points. By eqn (S37), the polynomial contains 2i coefficients, where i is the number

of FCR iterations. Therefore, in exact arithmetic FCR converges to the exact solution in at most

ceiling( /2) iterations. Because the polynomial adds two new coefficients in each FCR

iteration, we say each FCR iteration searches 2 independent directions. Note that Nrows ,

where Nrows is the number of rows in matrix M. For example, if matrix M contains Nrows =1

million, but matrix M has only 12 distinct eigenvalues, then FCR will converge to the exact

result in at most 6 iterations in exact arithmetic.

S2.2.3 Singular coefficients matrix

 Matrix M is singular if and only if one of its distinct eigenvalues equals zero. Singular

matrices are not invertible. Let 0  be the particular eigenvalue that is zero. Let c be the

coefficient in eqn (S35) associated with this particular eigenvalue. If c 0  , then let V be the

eigenvector (associated with zero eigenvalue ) that makes non-zero contribution to W in eqn

(S35).

RSC Advances S8

 The eigenvectors of a Hermitian matrix can always be chosen to form an orthonormal

basis that spans the whole Nrows-dimensional space. Consequently, for singular matrices the

eigenvector(s) spanning kernel(M) are orthogonal to all eigenvectors not in kernel(M).

 For singular matrices, there are obviously two separate cases. Case 1: When c 0  , then

the zero-eigenvalue of M does not contribute anything to the vector W. In this case,

eigenvector(s)  V associated with zero eigenvalue do not appear in the Krylov subspace

sequence is built-up as W, MW, M2W, …. Since the conjugate residual method is based on this

Krylov subspace sequence, the eigenstate(s)   ,V  are completely irrelevant to the problem

in exact arithmetic, because these zero eigenstates simply do not appear in the equation to be

solved nor in its solution. In this case, the linear equation system My=W is consistent and its

solution in exact arithmetic proceeds analogously to the non-singular case.

 Case 2: When c 0  , then a zero eigenstate makes non-zero contribution to W in eqn

(S35). Examining eqn (S39), an exact solution would be reached if

    i

j j1 Poly 0   (S44)

for every eigenstate contributing to W. For 0  , eqn (S44) simplifies to

 1 0

which is manifestly inconsistent. Therefore, the linear equation system My=W is manifestly

inconsistent in this case. Because My multiplies each eigenvector contributing to y by its

eigenvalue, then My does not contain any contributions from zero eigenstates. Therefore,

whenever W contains a non-zero contribution from a zero eigenstate, no exact solution exists.

 For singular coefficients matrix (whether the linear equation system is consistent or

inconsistent), each iteration removes conditioned residual along two z-search directions that are

orthogonal to each other and all prior z-search directions. Therefore, convergence is reached in at

most ceiling( /2) iterations, which is the same result as for the non-singular case given in

Section S2.2.2 above.

S2.2.4 Deriving the convergence criteria

 Regardless of whether the linear equation system is non-singular consistent, singular

consistent, or singular inconsistent, the least-squares solution corresponds to removing all

contributions to W that are not in kernel(M), with the final residual being that portion of W that

lies within kernel(M):

  minz W kernel M (S45)

 min min min 2z z min W My    (S46)

Examining eqn (S39), this FCR method always proceeds normally along all z-search directions

that are not in kernel(M). Because these z-search directions are a linear combination of

eigenstates that are orthogonal to kernel(M), projection of the conditioned residual onto

kernel(M) is not effected during this search.

RSC Advances S9

 Manifestly,    i i
Mz Mz 0 if only if    i

z kernel M , in which case
 i minz z and

the algorithm is converged. Therefore, a needed condition to construct a fail-proof conjugate

residual method is that one of the z-search directions (say  i
Mp) is chosen such that

        i i 1 i 1 i 1
Mp z Mz Mz 0

  
  (S47)

so that z-search always reduces the conditioned residual norm in each and every iteration until

convergence. If    i i
Mp Mp 0 then

   i
p kernel M and hence

       i i 1 i 1 i 1
Mp z Mz Mz 0

  
  . Therefore, if    i 1 i 1

Mz Mz 0
 

 then    i i
Mp Mp 0 .

 Therefore, the FCR algorithm has two convergence criteria. If
 i

z 0 , the FCR

algorithm converged to an exact solution (within the convergence tolerance). If
 i

z 0 but

   i i
Mz Mz 0 , then the linear equation system is inconsistent and the FCR algorithm

converged to the least-squares solution (within the convergence tolerance).

S2.3 Defining conjugate search directions that span the Krylov subspaces

 Each iteration involves two search directions,  i
p and  i

q :

           i i 1 i i i i

y y p q


   (S48)

           i i 1 i i i i

z z Mp Mq


   (S49)

subject to the constraints

      i i

2i,q Kp M,W (S50)

          1 1 i i

2iK M, W p ,qspan ,...p ,q 
 

 (S51)

 In exact arithmetic, all z-search directions are chosen to be orthogonal, thus ensuring a

conjugate method:

           i j i i j i j i

Mq Mq Mp Mq Mp Mp 0
 

   (S52)

The conditioned residual component along z-search directions
 i

Mp and
 i

Mq are removed in

iteration i. Since all other z-search directions are orthogonal to
 i

Mp and
 i

Mq , no conditioned

residual (except for round-off errors) is subsequently contaminated along these directions.

Hence,

       i j i i j i

Mq z Mp z 0
 

  (S53)

Let  i
S be the new z-search space for iteration i. Then,

     i i i

S span Mp ,Mq 
 

 (S54)

Following eqn (S53) and (S54), the conditioned residual is perpendicular to the current and prior

search subspaces:

       j i 1 2 i

z span S ,S ,...S
  

 
 (S55)

RSC Advances S10

Because two conjugate search directions are chosen from a Krylov subspace that increases by

two directions per iteration (and are orthogonal to all prior z-search directions), it follows that

      1 2 i k 2 2i 2kspan S ,S ,...S span MW,M W,...M W
       

 (S56)

              i i i i 1 2 i k2k 0 1 2k 0 2k 0 1 2k 0M p ,M p ,M q ,M q span S ,S ,...S
       

 
 (S57)

Similarly,

          i i 1 2 i 12Mz ,M z span S ,S ,...S
 

 
 (S58)

Thus,

        j i 1 i j i 1 i2z Mz z M z 0
   

  (S59)

Combining eqn (S55) and (S57) yields:

                j i k i j i k i j i k i j i k i2k 0 1 2k 0 2k 0 1 2k 0z M p z M p z M q z M q 0
                (S60)

 Combining eqn (S49), (S52), and (S53) yields

 

   

   

i i 1

i

i i

Mp z

Mp Mp



  (S61)

 

   

   

i i 1

i

i i

Mq z

Mq Mq



  (S62)

 As stated above in eqn (S51) – (S52),
   i i

p ,q are M2-conjugate to all prior search

directions that span the Krylov subspaces of orders ≤2i-2. Since

  
 ij 0

2i jM p,q K

 (S63)

it follows that for j≥0:

  
 

 
 k i (j/2) i2 jp,q M p,q 0

    (S64)

where  p,q means the equation holds for both p and q (i.e.,  
 ij 0M p,q means it holds for

 ij 0M p and
 ij 0M q). These equations are for exact arithmetic.

 These requirements will be fulfilled by choosing

           

i 1 i 1
i i 1 i j i j

i j i j

j 1 j 1

p Mz p q
 



 

 

      (S65)

First, we derive the conjugacy conditions. Contracting eqn (S65) with
 k i2M p


 gives

                    
i 1 i 1

k i k i 1 i k j i k j2 2 2 2

i j i j

j 1 j 1
0

M p p M p Mz M p p M p q 0
 



 

 

       (S66)

which must equal zero to satisfy eqn (S52). By eqn (S60),

       k i 1 i 1 k i 1 i 12 2M p Mz M q Mz 0
     

  (S67)

which gives

RSC Advances S11

  i
n 2 0  (S68)

    

   

   

i 1 i 12

i i

1 i 1 i 1

M p Mz

Mp Mp

 

 
    (S69)

Since  i
1 is the only non-zero component, for convenience the subscript is dropped. Contracting

eqn (S65) with  k i2M q


 gives

                    
i 1 i 1

k i k i 1 i k j i k j2 2 2 2

i j i j

j 1 j 1
0

M q p M q Mz M q p M q q 0
 



 

 

       (S70)

Making use of eqn (S67) gives

  i
n 2 0  (S71)

   

   

   

i 1 i 12

i i

1 i 1 i 1

M q Mz

Mq Mq

 

 
    (S72)

Hence,

            i i 1 i i 1 i i 1
p Mz p q

  
   (S73)

This choice for  i
p satisfies the requirement in eqn (S47) above:

                    i i 1 i 1 i 1 i i 1 i 1 i i 1 i 1
p Mz Mz Mz p Mz q Mz

      
   (S74)

which rearranges to give

                        i i 1 i 1 i 1 i i 1 i 1 i i 1 i 1 i 1 i 1

0 0

Mp z Mz Mz Mp z Mq z Mz Mz
        

    (S75)

 Next, a method is derived to compute  i
q . Since

          1 1 i 1 i 12 2 2 2

2iK M, W span W,MW,M p ,M q ,...M p ,M q
  

 
 (S76)

it follows that
 i 12M q


 and
 i 12M p


 are linearly independent of  2i 2K M,W
 and each other

(unless the FCR algorithm has converged). Together with eqn (S56)–(S57) this means that

 i 13M p


 and  i 13M q


 have non-zero projections onto
 i

S . Since  i
Mp and  i

Mq form a basis

for
 i

S (eqn (S54)), we can construct the vector  i
Mq by first constructing a linear combination

of  i 13M p


 and  i 13M q


 that is orthogonal to  i
Mp , and then subtracting all projections onto the

prior search spaces
 j i

S


 (which are spanned by  j i
Mp


 and  j i

Mq


). By eqn (S64),

  
 

 
 

 
 

 
 i 1 h i 2 i 1 h i 23 4M p,q M p,q p,q M p,q 0

     
  (S77)

Therefore, projections onto
 h i 2

S
 

 are automatically zero in exact arithmetic. The following

ordered sequence of assignment operations gives  i
q with these required properties. Assigning

RSC Advances S12

  

   

       

i i 12 2

i

1
2 2

i i 1 i i 12 2 2 2

M p M q

M p M q M p M p



 

  



 (S78)

  

   

       

i i 12 2

i

2
2 2

i i 1 i i 12 2 2 2

M p M p

M p M q M p M p



 

 



 (S79)

          i i i 1 i i 12 2

1 2q M p M q
 

  (S80)

yields a provisional  i
q that is M2-conjugate to  i

p . Assigning

 

   

   

i 2 i2

i

2 i 2 i 2

M p q

Mp Mp



 
  (S81)

 

   

   

i 2 i2

i

2 i 2 i 2

M q q

Mq Mq



 
  (S82)

            i i i i 2 i i 2

2 2q q p q
 

   (S83)

yields a provisional  i
q that is M2-conjugate to  i 2

p


 and  i 2
p


 in exact arithmetic. Assigning

 

   

   

i 1 i2

i

1 i 1 i 1

M p q

Mp Mp



 
  (S84)

 

   

   

i 1 i2

i

1 i 1 i 1

M q q

Mq Mq



 
  (S85)

           i i i i 1 i i 1

1 1q q p q
 

   (S86)

yields a provisional  i
q that is M2-conjugate to  i 1

p


 and  i 1
p


. Assigning

 

   

   

i i2

i

0 i i

M p q

Mp Mp
  (S87)

       i i i i

0q q p  (S88)

yields non-provisional  i
q that is M2-conjugate to  i

p .

 The algorithm is initialized with

   i 0 i 0

p q 0
 

  (S89)

   1 0

p Mz MW  (S90)

   

   

 
2

1 0 1

1 1

MW M W
q z p

Mp Mp
  (S91)

This choice satisfies the conjugacy condition:

RSC Advances S13

       

   

 
2

1 1 1 0 1

1 1

2

2 2

2 2

2 2

MW M W
Mp Mq Mp Mz Mp

Mp Mp

MW M W
M W MW M W

M W M W

M W MW MW M W

0

 

 

 



 (S92)

S2.4 Vector lengths in exact arithmetic

 The above relationships prove the z-search directions are orthogonal and members of the

appropriate Krylov subspaces, but additional analysis is required to prove the search directions

have non-zero lengths (at least until convergence). If  i
p 0 ,  i

Mp 0 ,  i
q 0 , or  i

Mq 0

occur on any iteration except the last one, then the correct Krylov subspaces may not be spanned

by these vectors. Note that a vector  equals zero if and only if its squared length ( ) is

also zero. Also, the squared length of any vector is non-negative:

 0   (S93)

 Here is a proof that  i
p 0 until convergence is reached. From eqn (S53),

       i 1 i 1 i 1 i 1

Mz p Mz q 0
   

  (S94)

Thus, taking the dot product of eqn (S65) with itself yields

                       i i i 1 i 1 i i 1 i i 1 i i 1 i i 1

p p Mz Mz p q p q 0
     

        (S95)

From eqn (S93), the two terms on the right side of eqn (S95) must be non-negative. As

mentioned in Section S2.2.4 above, if    i 1 i 1
Mz Mz 0

 
 the FCR algorithm would have

already exited in iteration (i-1) due to convergence. Thus, during the FCR algorithm,

    i i
p p 0 (S96)

It was already proved in Section S2.2.4 above that if
   i 1 i 1

Mz Mz 0
 

 , then

   i i
Mp Mp 0 . Therefore,  i

Mp 0 during the FCR algorithm.

 The condition under which  i
q 0 could occur is now derived. Examining eqn (S78) –

(S88),  i
q is a linear combination of  i 12M p


,  i 12M q


,  i 1

p


,  i 1
q


,  i 2

p


, and  i 2
q


 that fulfills

the conjugacy relations in eqn (S52). (Note that in exact arithmetic,
 i
0 0  because eqn (S78) –

(S80) already enforce
   i i

Mp Mq 0) The condition  i
q 0 would imply that

   i 1 i 12 2 j i j ispan M p ,M q span p ,q
         

. This could only occur if

RSC Advances S14

   i 1 i 1j i j i 2 2span p ,q ,M p ,M q
   

 
 contains fewer than 2i linearly independent vectors. Combining

eqn (S51) and (S76) gives

      i 1 i 1j i j i 2 2

2ispan p ,q ,M p ,M q K M, W
    

 
 (S97)

Therefore  2iK M,W contains ≤ (2i -1) linearly independent terms if  i
q 0 . From eqn (S43),

this can only mean there are 2i 1  distinct eigenvalues having non-zero contributions to W.

As derived in Sections S2.2.2 and S2.2.3 above, FCR converges in at most ceiling( /2)

iterations. Thus, FCR converges in at most ceiling((2i-1)/2) = i iterations when  i
q 0 .

Therefore,  i
q 0 can occur only on the last iteration during which FCR converges.

 The condition  i
Mq 0 could only occur if

   i
q kernel M . This can occur in the

 i
q 0 case discussed in the prior paragraph (i.e., on the last iteration during which FCR

converges). It may be possible for this condition to also arise during other iterations. The

algorithm includes a division by zero check to handle cases where    i i
Mq Mq 0 . When

   i i
Mq Mq 0 the required M2-conjugacy between a vector  and  i

q is automatically

satisfied:  i
M Mq 0 0   . Therefore, the corresponding parameter

 i
 (eqn (S62)),  i

 (eqn

(S72)),
 i
1 (eqn (S78)),

 i
2 (eqn (S79)),

 i
1 (eqn (S85)), or

 i
2 (eqn (S82)) is set to zero when

its corresponding denominator would be zero.

S2.5 Robust convergence and round-off error resistance

 The Orthodir conjugate gradient algorithm can work for both positive definite and

indefinite Hermitian coefficients matrix M.3 However, it suffers from the accumulation of round-

off errors. In the Orthodir algorithm, the y-search direction at each successive iteration is

computed as

           i i 1 i i 1 i i 2

p Mp p p
  

   (S98)

where  i
 and

 i
 are chosen to fulfill some chosen conjugacy condition.3 In exact arithmetic,

eqn (S98) would enforce orthogonality between
 i

Mp ,
 i 1

Mp


, and
 i 2

Mp


. Because the choice

of direction
 i

p does not explicitly depend on the residual’s value (see eqn (S98)), a buildup of

round-off errors over many iterations can cause the chosen z-search direction
 i

Mp to become

uncorrelated to the residual’s value. When this occurs, the Orthodir algorithm is does not operate

as intended and may fail to converge.

 The FCR algorithm solves this problem by making the new search direction
 i

p depend

explicitly on the residual’s current value (eqn (S73)). Thus, irrespective of any round-off errors

that have occurred, this search direction will never become uncoupled from the residual’s value.

Round-off errors can potentially cause the  i
q direction to stray from its precise value.

RSC Advances S15

 FCR explicitly enforces orthogonality between  i
Mp ,  i

Mq ,  i 1
Mp


, and  i 1

Mq


 in each

iteration regardless of any round-off errors that have occurred. Eqn (S87)–(S88) ensure that

    i i
Mq Mp 0 (S99)

even if round-off errors occurred during prior computations. With this result, eqn (S84)–(S86)

and eqn (S65), (S69), and (S72) ensure that

        i i 1 i i 1
Mq Mp Mq Mq 0

 
  (S100)

        i i 1 i i 1
Mp Mp Mp Mq 0

 
  (S101)

even if round-off errors occurred during prior computations. M2-conjugacy between  
 i

p,q and

 
 h i 1

p,q
 

 may be compromised by round-off errors.

 Irrespective of any round-off errors that occurred during prior computations, eqn (S99),

(S61), and (S62) ensure that

        i i i i
Mq z Mp z 0  (S102)

In other words, during iteration i the conditioned residual components along z-search directions
 i

Mp and  i
Mq are completely removed regardless of any round-off errors that occurred during

prior computations.

 It will now be proved
 i

 necessarily decreases in each iteration until FCR converges,

even when using fixed precision arithmetic. Rearranging eqn (S49) gives

           i 1 i i i i i

z z Mp Mq

   (S103)

Taking the dot product of eqn (S103) with itself gives

                   

                    

                      

2 2
i 1 i 1 i i i i i i i i

i i i i i i i i i i

0 0 0

i i i i i i i i i i

0 0 0

z z z z Mp Mp Mq Mq

z Mp z Mq * Mp Mq

* Mp z * Mq z * Mq Mp

 
    

     

      

 (S104)

Hence,

                    
2 2

i 1 i 1 i i i i i i i i
z z z z Mp Mp Mq Mq

 
     (S105)

Substituting eqn (S33), (S61), and (S62) into (S105) gives

   

   

   

   

   

2 2
i i 1 i i 1

i i 1

i i i i

Mp z Mq z

Mp Mp Mq Mq

 


     (S106)

Expanding
 i

p using eqn (S73) gives

RSC Advances S16

                     i i 1 i 1 i 1 i i 1 i 1 i i 1 i 1

0 0

Mp z Mz Mz * Mp z * Mq z
      

     (S107)

where the quantities marked zero via eqn (S53). Substituting eqn (S107) into (S106) gives

   

   

   

   

   

22 i i 1i 1 i 1

i 1 i

i i i i

Mq zMz Mz
0

Mp Mp Mq Mq

 


     (S108)

As discussed in Section S2.2.4 above, FCR is not yet converged when    i 1 i 1
Mz Mz 0

 
 .

Inserting this into eqn (S108) gives
   i 1 i

0


   when FCR is not yet converged. Hence, the

FCR algorithm always decreases the conditioned residual norm in every iteration until

convergence. Because the required conjugacy conditions (eqn (S99) – (S102)) hold even for

fixed precision arithmetic, eqn (S108) remains valid for fixed precision arithmetic.

S2.6 Computational algorithm

 Convergence thresholds: The following three parameters control convergence thresholds.

(1) FCR will exit if the maximum absolute value of every conditioned residual component is

less than CR_convergence_tol. (2) FCR will exit if SQRT(<Mz | Mz>) is less than

Mz_length_tolerance. The division_tolerance = (Mz_length_tolerance2) sets the threshold for

when <Mq | Mq> and related denominators are considered to be effectively zero.

Mz_length_tolerance should be set to a value much smaller than CR_convergence_tol. (3)

max_CR_steps specifies the maximum number of FCR iterations that can be performed.

 Description of key variables to declare: (a) scalars: CR_gamma, CR_tau, CR_beta,

CR_xi, CR_z_z, CR_Mz_Mz, CR_Mp_z, CR_Mq_z, CR_Mp_Mq, temp1, temp2, temp3, (b)

vectors with a small number of rows and one column: CR_kappa(2 rows), CR_chi(2 rows),

CR_sigma(2 rows), CR_Mp_Mp(2 rows), CR_Mq_Mq(2 rows), (c) vectors with N rows and

one column: W, y, z, Mz, Mp, Mq, (d) arrays with N rows and 3 columns: p, MMp, q, MMq. If

both M and W are real-valued, all of these will be declared as real variables; otherwise, they will

be declared as complex variables.

 Initiation: The FCR algorithm is initialized as follows:

1. Initialize y=0, z = W, p(:,:) = 0, q(:,:) = 0, MMp(:,:) = 0, MMq(:,:) = 0

2. Compute CR_z_z = <z | z> and the maximum absolute value of any z-component. If the

maximum absolute value of any z-component is less than CR_convergence_tol, print the

following message “The linear equation system is consistent. A nearly exact solution has

been returned.” and exit.

3. Compute Mz = M×z

4. Compute CR_Mz_Mz = < Mz | Mz >. If SQRT(CR_Mz_Mz) < Mz_length_tolerance,

print the following message “The linear equation system is inconsistent. A least squares

solution has been returned.” and exit.

5. Initialize p(:,1) = Mz(:)

6. Compute Mp = M×p(:,1)

RSC Advances S17

7. Compute CR_Mp_Mp(1) = <Mp | Mp> and temp1 = <p(:,1) | Mp>.

8. Initialize q(:,1) = z(:) – (temp1/ CR_Mp_Mp(1))×p(:,1)

9. Initialize Mq = Mz – (temp1/ CR_Mp_Mp(1))×Mp

10. Compute MMp(:,1) = M×Mp and MMq(:,1) = M×Mq

11. Initialize CR_Mq_Mq(:) = 1, CR_Mp_Mp(2) = 1, CR_kappa(:) = 0

 Iterations: Each FCR iteration follows the following sequence of steps:

1. Set CR_Mq_Mq(2) = CR_Mq_Mq(1). Then compute CR_Mq_Mq(1) = <Mq | Mq>,

CR_Mp_z = < Mp | z >, CR_Mq_z = < Mq | z >, and CR_Mz_Mz = <Mz | Mz>. Note

that CR_Mz_Mz does not need to be used by the method, but is optionally printed along

with CR_Mp_z as a consistency check to show round-off errors are suppressed since

CR_Mz_Mz = CR_Mp_z in exact arithmetic.

2. Compute CR_gamma = CR_Mp_z/CR_Mp_Mp(1). IF (CR_Mq_Mq(1) >

division_tolerance) THEN CR_tau = CR_Mq_z/CR_Mq_Mq(1), ELSE CR_tau = 0.

3. Compute y(:) = y(:) + CR_gamma×p(:,1) + CR_tau×q(:,1), z(:) = z(:) -

CR_gamma×Mp(:) - CR_tau×Mq(:), and Mz(:) = Mz(:) - CR_gamma×MMp(:,1) -

CR_tau×MMq(:,1).

4. Compute the conditioned residual norm CR_z_z = < z | z > and the maximum absolute

value of any z-component. If desired, these can be printed. If the maximum absolute

value of z-components is less than CR_convergence_tol, print the following message

“The linear equation system is consistent. A nearly exact solution has been returned.” and

exit.

5. Compute CR_Mz_Mz = < Mz | Mz >. If SQRT(CR_Mz_Mz) < Mz_length_tolerance,

print the following message “The linear equation system is inconsistent. A least squares

solution has been returned.” and exit.

6. Optional printing of conjugacy tests: If desired, the following quantities can be

recomputed and printed: CR_Mp_z = < Mp | z >, CR_Mq_z = < Mq | z >, and

CR_Mp_Mq = < Mp | Mq >. When the conjugacy conditions are satisfied, all three of

these quantities should be zero. If desired, CR_Mz_Mz and CR_Mp_z can be printed;

these should equal each other.

7. Shift the p and q vector related quantities to store them as prior iteration: p(:,3) = p(:,2),

q(:,3) = q(:,2), MMp(:,3) = MMp(:,2), MMq(:,3) = MMq(:,2), p(:,2) = p(:,1), q(:,2) =

q(:,1), MMp(:,2) = MMp(:,1), MMq(:,2) = MMq(:,1)

8. Compute temp1 = < MMp(:,2) | Mz >, temp2 = < MMq(:,2) | Mz >. Then compute

CR_beta = temp1/CR_Mp_Mp(1). IF (CR_Mq_Mq(1) > division_tolerance) THEN

CR_xi = temp2/CR_Mq_Mq(1), ELSE CR_xi = 0.

9. Compute p(:,1) = Mz(:) - CR_beta×p(:,2) - CR_xi×q(:,2)

10. Compute Mp = M×p(:,1)

11. Compute MMp(:,1) = M×Mp

RSC Advances S18

12. Use the following sequence to compute CR_kappa. First, compute temp1 = - < MMp(:,1)

| MMq(:,2) > and temp2 = < MMp(:,1) | MMp(:,2) >. Then compute temp3 =

sqrt((temp1)×CONJG(temp1) + (temp2)×CONJG(temp2)). (Note: The function CONJG

returns the complex conjugate.) IF (temp3 > division_tolerance) THEN CR_kappa(1) =

temp1/temp3 and CR_kappa(2) = temp2/temp3, ELSE CR_kappa(:) = 0. Then compute

q(:,1) = CR_kappa(1)×MMp(:,2) + CR_kappa(2)×MMq(:,2).

13. Compute temp1 = < MMp(:,3) | q(:,1) > and temp2 = < MMq(:,3) | q(:,1) >. Then

compute CR_chi(2)= temp1/CR_Mp_Mp(2). IF (CR_Mq_Mq(2) > division_tolerance)

THEN CR_sigma(2)= temp2/CR_Mq_Mq(2), ELSE CR_sigma(2) = 0. Then compute

q(:,1) = q(:,1) – CR_chi(2)×p(:,3) – CR_sigma(2)×q(:,3).

14. Compute temp1 = < MMp(:,2) | q(:,1) > and temp2 = < MMq(:,2) | q(:,1) >. Then

compute CR_chi(1)= temp1/CR_Mp_Mp(1). IF (CR_Mq_Mq(1) > division_tolerance)

THEN CR_sigma(1)= temp2/CR_Mq_Mq(1), ELSE CR_sigma(1) = 0. Then compute

q(:,1) = q(:,1) – CR_chi(1)×p(:,2) – CR_sigma(1)×q(:,2).

15. Set CR_Mp_Mp(2) = CR_Mp_Mp(1). Then compute temp1 = < MMp(:,1) | q(:,1) > and

CR_Mp_Mp(1) = < Mp | Mp >.

16. Compute q(:,1) = q(:,1) – temp1/CR_Mp_Mp(1))×p(:,1)

17. Compute Mq = M×q(:,1)

18. Compute MMq(:,1) = M×Mq

19. IF the current FCR iteration number equals max_CR_steps, print the following message

“Maximum number of FCR cycles reached. The current estimate of the solution has been

returned.” and exit; ELSE return to step 1 above to start the next FCR cycle.

S3. Proof the wp lookup table method yields error proportional to the interval squared

 As explained in the main text, a wp lookup table is constructed on a logarithmic scale:

    2

1x ln min wp _ values 10  (S109)

    2

Num_lookupx ln max wp _ values 10  (S110)

Num_ lookup 1

i i 1

x x
interval x x

Num _ lookup 1



  


 (S111)

 ix

iwp _ table e (S112)

Each atom A’s polarizability A contributes to two adjacent array values j and (j+1), where

 A 1ln wp _ values x

j floor 1
interval

 
  

 
 (S113)

A j

j 1

j 1 j

wp _ values wp _ table
c

wp _ table wp _ table








 (S114)

j j 1c 1 c   (S115)

j j j Aalpha _ table alpha _ table c   (S116)

RSC Advances S19

j 1 j 1 j 1 Aalpha _ table alpha _ table c     (S117)

   
Num _ lookup Natoms

total i k
6 i k

i 1 k 1 i k

wp _ table wp _ values3
C alpha _ table

2 wp _ table wp _ values 

 
  

 
  (S118)

Observe that

j j 10 c ,c 1  (S119)

Under practical applications,

 A0.01 wp _ values 20  (S120)

in atomic units. Because Num_lookup=105 is much larger than ((ln(max(wp_values)) + 10-2) –

(ln(min(wp_values)) – 10-2)), it follows that

 0 < interval 1 (S121)

 Defining

 A Bq wp _ values wp _ values (S122)

gives

 A B A
6,AB A B A B

A B

wp _ values wp _ values wp _ values3 3
C

2 wp _ values wp _ values 2 q 1
     

 
 (S123)

For k = B in the inner loop of eqn (S118), this lookup table method corresponds to the following

j B j 1 B

6,AB A B j j 1

j B j 1 B

wp _ table wp _ values wp _ table wp _ values3
C c c

2 wp _ table wp _ values wp _ table wp _ values







 
    

   

 (S124)

 Rearranging eqn (S114) gives

 

A j

j 1 interval

j

wp _ values wp _ table
c

wp _ table e 1






 (S125)

which further rearranges to give

  intervalA
j 1

j

wp _ values
1 c e 1

wp _ table
   (S126)

    interval -interval -intervalA A
j 1 j 1 j 1interval

j 1 j

wp _ values wp _ values
1 c e 1 e c 1 c e

wp _ table wp _ table e
  



       
 

 (S127)

 Expanding

  

j B A A

interval
A Aj B j 1

B j

wp _ table wp _ values wp _ values wp _ values

wp _ values wp _ valueswp _ table wp _ values q 1 c e 1
wp _ values wp _ table



 
   

 (S128)

  

j 1 B A A

-interval
A Aj 1 B j 1 j 1

B j 1

wp _ table wp _ values wp _ values wp _ values

wp _ values wp _ valueswp _ table wp _ values q c 1 c e
wp _ values wp _ table



  



 
   

 (S129)

RSC Advances S20

 A B A A

A B A

B

wp _ values wp _ values wp _ values wp _ values

wp _ values wp _ values q 1wp _ values
1

wp _ values

 
  

 
 

 (S130)

 Hence, the relative error in computed
6,ABC is

j B j 1 B

A B j j 1

j B j 1 B

A B
A B

A B

wp _ table wp _ values wp _ table wp _ values3
c c

2 wp _ table wp _ values wp _ table wp _ values
1

wp _ values wp _ values3

2 wp _ values wp _ values







 
   

     

 


 (S131)

which expands as

  
     

j 1 j 1interval -interval

j 1 j 1 j 1

q 1 q 1
1 c c 1

q 1 c e 1 q c 1 c e
 

  

 
    

     
 (S132)

Using Mathcad’s symbolic engine, this was expanded to a Taylor series in powers of interval:

   

 
 

2

j 1 j 1 3

2

- interval c 1 c q
interval ...

1 q

 
   


Order (S133)

This formula lends itself to extremely easy magnitude analysis. Over the interval
j 10 c 1  ,

locating the maximum value of function  j 1 j 1c 1 c  using the standard technique of setting the

function’s derivative to zero yields

  j 1 j 10 c 1 c 1/ 4    (S134)

For q ≥ 0, a similar analysis for the function q/(1+q)2 yields

 

2

q 1
0

41 q
 


 (S135)

Inserting eqn (S134) and (S135) into (S133) yields

2interval

16
  (S136)

where the third-order and higher terms can be neglected, because 0 < interval << 1.

 Because total

6C is the sum of positive
6,ABC values, the unsigned relative error (URE) of

total

6C is necessarily less than or equal to that of the largest URE of
6,ABC . Therefore, the URE in

total

6C is bounded by

total,calc total,exact 2
6 6

total,exact 2

6

C C interval ~ 4

C 16 Num _ lookup


  (S137)

It follows from eqns (S120) and (S121) that

 

 
 
  

Num _ lookup 1

interval Num _ lookup 1

max wp _ values
ln x x ~ 8

min wp _ values


 
    

 
 (S138)

RSC Advances S21

Substituting eqn (S138) into the center of eqn (S137) yields the right-most inequality of eqn

(S137). For Num_lookup = 105, a URE ≤ ~4×10-10 is expected.

S4. Linear-scaling algorithm for setting up the lists of interacting atom pairs

S4.1 Overview

 Figure S1 is a flow diagram of the linear-scaling algorithm to set up the lists of

interacting atom pairs. Data is grouped to enable fast computation by avoiding all array searches.

For example, information is ordered such that arrays do not have to be searched to identify which

atoms belong in each spatial region. Also, each array allocation is performed once, rather than

continuously appending arrays (which would be extremely slow). This is accomplished by first

performing a ‘dry run’ code block that executes a sequence to count up the required array size,

followed by array allocation, followed by a code block that writes data to the allocated array. The

four key steps to construct these lists are:

1. Define basis vectors and unit cell parallelepiped: A parallelepiped of non-zero volume is

constructed to enclose the system’s unit cell. Three basis vectors correspond to this

parallelepiped’s non-collinear edges. For a periodic direction, the basis vector is the

corresponding periodic lattice vector. For a non-periodic direction, the basis vector is

chosen to be of a non-zero length that fully encloses all the nuclear positions. Periodic

basis vectors can be non-perpendicular to each other (e.g., triclinic unit cells), but each

non-periodic basis vector is chosen to be perpendicular to the other basis vectors.

2. Divide the unit cell parallelepiped into spatial regions: This unit cell parallelepiped is

divided into a whole number of spatial regions along each basis vector. A periodic

direction produces an infinite number of periodic images of each region, while a non-

periodic direction has only the reference image. Atoms in the reference unit cell are

classified by region, and a sorted list is prepared such that atoms of the same region are

adjacent in this sorted list. Because each spatial region is defined such that its volume is

less than that of a sphere of dipole interaction cutoff length radius, the number of atoms

in each region is always below a threshold. The code ignores regions that do not contain

any atoms. Because empty regions are skipped, having a few atoms in the center of an

enormous unit cell would execute quickly.

3. Construct arrays listing interacting region pair images: Two spatial region images

interact if the minimum distance between inter-region points is ≤ the dipole interaction

cutoff length. Because the spatial regions and their images are coordinate system

indexed, a list of interacting region pair images is constructed without having to

construct a double summation over all region pairs. Thus, even for an extremely large

unit cell (e.g., containing billions of atoms) divided into many regions (e.g., millions),

the list of interacting region pair images is constructed in time and memory scaling

linearly with increasing unit cell size. Different regions can interact with different

periodic images. For example, in an extremely large unit cell, a region near the center

would interact only with nearby regions in the reference unit cell, while a region not too

RSC Advances S22

far from the left edge would interact with some regions in the reference unit cell and

some other region images in the left-translated unit cell. Thus, a first array is constructed

listing pairs of regions having any interacting images, and a second array is prepared

that lists which specific images of each particular region pair interact. Region pairs that

do not interact are not included in these two arrays.

4. Construct two lists of interacting atom pairs: Because interacting atom pairs must be

contained in interacting region pair images, the code identifies the interacting atom pairs

by executing an outer loop over the interacting region pair images and inner loops over

the atoms in these regions (along with tests for inclusion criteria). Using the list of

atoms sorted by region makes this process cache access friendly. For each such atom

pair, tests are performed to determine if it meets the small and large list inclusion

criteria. If so, its information is added to the small and/or large lists. Because the

number of interacting region pair images scales linearly with large Natoms and the

number of atoms in each region is below a threshold, these small and large lists are

constructed in linear-scaling computational time and memory for large Natoms.

 The zip archive included in the Electronic Supplementary Information contains a folder

named “construct_lists_of_interacting_atom_pairs”. This folder contains example Fortran code

that implements the method described here. Readers can examine this for finer coding details.

This code is in the form of modules that should be called by a main program (not included). The

main program must supply the required input data (e.g., number of atoms, coordinates for each

atom, unit cell information, etc).

 The following Sections S4.2, S4.3, S4.4, and S4.5 explain important mathematical

equations and procedural details for the four key steps to construct the lists of interacting atom

pairs.

RSC Advances S23

Figure S1: Flow diagram for setting up the lists of interacting atom pairs. The inputs followed by

(MCLF) are needed only for the MCLF method and not the TS-SCS method.

Input Data

Parameters: dipole interaction cutoff length, multibody screening parameter

(MCLF), distance to attenuation ratio cutoff. Unit cell properties: number of

atoms, number of periodic directions, lattice vector for each periodic

direction, whether to ignore periodic boundary conditions. Properties for

each atom in the material: coordinates, unscreened damping radius (MCLF),

wp, static unscreened polarizability

Define basis vectors and unit cell parallelepiped

Define: basis vectors and origin. Compute: reciprocal basis vectors, volume

of unit cell parallelepiped, coordinates and reciprocal coordinates of atoms

in the reference unit cell

Divide the unit cell parallelepiped into spatial regions

Define: the whole number of spatial regions along each basis vector

Group data: sort atoms in the reference unit cell according to spatial region

Indicate which spatial regions contain no atoms. (These regions are skipped

in all subsequent analysis.)

Construct arrays listing interacting region pair images

 Compute: the sum limit along each basis vector, and the largest body

diagonal of one spatial region. Construct using data grouping: one array

listing the spatial region pairs having any interacting images, and another

array listing which images interact for each particular interacting region pair

Construct two lists of interacting atom pairs

Both the small and large lists contain only translation symmetry unique atom

pairs. The small list contains ‘overlapping atom images’ as determined by

the distance to attenuation ratio being less than the distance to attenuation

ratio cutoff. For each entry in the small list, the first atom resides the in the

reference unit cell, while the second atom may or may not reside in the

reference unit cell. The large list contains atom pairs for which any images

are within the dipole interaction cutoff length. The large list stores only sums

collected over all periodic images for an atom pair; no individual image data

is stored in the large list.

RSC Advances S24

S4.2 Define basis vectors and unit cell parallelepiped

 A parallelepiped of non-zero volume is constructed to enclose the system’s unit cell.

Three basis vectors       A B C
v , v , v correspond to this parallelepiped’s non-collinear edges. For a

periodic direction, the basis vector is the corresponding periodic lattice vector. For a non-

periodic direction, the basis vector is chosen to be of a non-zero length that fully encloses all the

nuclear positions. Periodic basis vectors can be non-perpendicular to each other (e.g., triclinic

unit cells), but each non-periodic basis vector is chosen to be perpendicular to the other basis

vectors. Following is a brief description of how the basis vectors and origin are chosen for

different numbers of periodic boundary conditions:

0. No periodic boundary conditions: The minimum and maximum values of atomic XYZ

coordinates are computed in atomic units (bohrs). The three basis vectors are chosen as:

basis_vector_a = max_X – min_X + 1, basis_vector_b = max_Y – min_Y + 1, and

basis_vector_c = max_Z – min_Z + 1. (This definition ensures each basis vector has a

length ≥ 1 even for single atoms, linear molecules, and planar molecules.) The origin is

set to origin = ((min_X - ½), (min_Y - ½), (min_Z - ½)) to ensure the reciprocal

coordinates are > 0 even in the presence of rounding errors.

1. One periodic boundary condition: One basis vector is set equal to the periodic lattice

vector. The two other basis vectors are defined to be perpendicular to this lattice vector

and to each other. Two pre-basis vectors of unit lengths are constructed parallel to the

two non-periodic directions. For each of the two non-periodic basis vectors, the

following process is performed separately to determine its length: A loop over atoms is

performed. In each iteration of this loop, the dot product is constructed from the current

atom’s coordinates and the corresponding pre-basis vector. The minimum and

maximum dot products across the set of all atoms is computed. The length of this basis

vector (in atomic units) is then set to the max_dot_product – min_dot_product + 1.

Then the origin is defined such that the minimum DOT_PRODUCT((coords(atom1,:) –

origin), nonperiodic_basis_vector_1) = ½ and minimum

DOT_PRODUCT((coords(atom1,:) – origin), nonperiodic_basis_vector_2) = ½, where

the minimum is computed over the set of all atoms.

2. Two periodic boundary conditions: Two basis vectors are set equal to the periodic

lattice vectors. The third basis vector is defined to be parallel to the cross product of the

two periodic lattice vectors. A pre-basis vector of unit length is formed along this

direction. Then, a loop over atoms is performed. In each iteration of this loop, the dot

product is constructed from the current atom’s coordinates and this pre-basis vector. The

minimum and maximum dot products across the set of all atoms is computed. The

length of this basis vector (in atomic units) is then set to the max_dot_product –

min_dot_product + 1. Then the origin is defined such that the minimum

DOT_PRODUCT(((coords(atom1,:) – origin), nonperiodic_basis_vector) = ½, where

the minimum is computed over the set of all atoms.

RSC Advances S25

3. Three periodic boundary conditions: The basis vectors are set equal to the periodic

lattice vectors. The origin is set to (0,0,0).

 Define the matrix of basis vectors as

 

     

     

A (A) (A)

1 2 3

B B B

1 2 3

C C C

1 2 3

v v v

basis _ vectors v v v

v v v

 
 

  
 
 
 

 (S139)

Then, the unit cell volume is the absolute value of the determinant:

   unit _ cell _ volume abs det basis _ vectors (S140)

The reciprocal basis vectors are the transposed inverse:

   
1

T
inverse _ vectors basis _ vectors



 (S141)

The reciprocal space coordinates for each atom1 are then given by

      inverse _ coords :,atom1 matmul inverse _ vectors, coords :,atom1 origin  (S142)

where matmul is the matrix multiplication function. Then a modulo is applied to select the image

of atom A that resides within the reference unit cell:

     inverse_coords :,atom1 = modulo inverse_coords :,atom1 ,1.0 (S143)

This ensures the reciprocal space coordinates lie within the interval ([0,1), [0,1), [0,1)).

S4.3 Divide the unit cell parallelepiped into spatial regions

 First, a few geometric factors are computed from the unit cell parallelepiped:

     A A
length _ a DOT _ PRODUCT v ,v (S144)

    
  

A A
DOT _ PRODUCT v , v

cos_ a _ b
length _ a length _ b

 (S145)

  
2

sin_ a _ b 1 cos_ a _ b  (S146)

and so forth for the other basis vectors.

unit _ cell _ volume

height _ a
length _ b length _ c sin_ b _ c


 

 (S147)

is the positive projection of
 A

v onto the direction perpendicular to the parallelogram formed by

 B
v and

 C
v . Note that (length_b . length_c . sin_b_c) is the area of this parallelogram.

Analogously,

unit _ cell _ volume

height _ b
length _ a length _ c sin_ a _ c


 

 (S148)

unit _ cell _ volume

height _ c
length _ a length _ b sin_ a _ b


 

 (S149)

RSC Advances S26

 Then, the whole number of regions along each basis vector is calculated as:

3

ref _ regions _ a ceiling height _ a
dipole_interaction_cutoff_length

  
   

  
 (S150)

3

ref _ regions _ b ceiling height _ b
dipole_interaction_cutoff_length

   
     

   

 (S151)

3

ref _ regions _ c ceiling height _ c
dipole_interaction_cutoff_length

   
     

   

 (S152)

The ceiling function rounds up to an integer. The factor (3/dipole_interaction_cutoff_length) sets

the preferred length of a region to approximately one-third the dipole interaction cutoff length.

This guarantees the size of each region is always substantially smaller than the dipole interaction

cutoff length while also not creating an unnecessarily large number of regions.

 During a loop performed over atoms, each atom is assigned to a spatial region as labeled

by three whole number indices in the interval ([1,ref_regions_a], [1,ref_regions_b],

[1,ref_regions_c]). Along the first basis vector, the corresponding region index for atom1 is

   region _ a NINT ref _ regions _ a inverse _ coords 1,atom1 0.5   (S153)

with analogous expressions for the second and third basis vectors, where NINT rounds to the

closest integer (0.5 being rounded up). If any region does not contain any atoms, this region is

marked as empty and skipped in all subsequent analysis.

 Finally, data grouping is performed to prepare a list of atoms and their coordinates such

that all atoms from the same region are grouped together in this list. The starting and ending

index values for each region in this list is computed and stored. This makes it extremely easy to

perform loops over all atoms in a particular region without having to do any array searches.

S4.4 Construct arrays listing interacting region pair images

 When constructing a list of representative interacting region pair images, the first region

can always be chosen within the reference unit cell. Since there are no periodic translations along

a non-periodic direction, then for a non-periodic direction the second region in the interacting

region pair image also always lies within the reference unit cell. Along a periodic direction, the

second region in the interacting region pair image can be a periodically translated image of some

region such that this image has some points located closer than dipole_interaction_cutoff_length

of some points in the first region. Therefore, periodicsumlimitA, periodicsumlimitB, and

periodicsumlimitC are defined such that only region images with integer translation indices

 1periodicsumlimitA L periodicsumlimitA   (S154)

 2periodicsumlimitB L periodicsumlimitB   (S155)

 3periodicsumlimitC L periodicsumlimitC   (S156)

need to be tested when setting up the list of interacting region pair images. For a non-periodic

direction, the corresponding periodic sum limit is obviously set to zero. If ignore_PBC = true, then

RSC Advances S27

periodic boundary conditions are ignored and all periodic sum limits are set to zero. For a periodic

direction, the corresponding periodic sum limit is set to the corresponding one of the following:

dipole_interaction_cutoff_length

periodicsumlimitA = ceiling
height _ a

 
 
 

 (S157)

dipole_interaction_cutoff_length

periodicsumlimitB = ceiling
height _ b

 
 
 

 (S158)

dipole_interaction_cutoff_length

periodicsumlimitC = ceiling
height _ c

 
 
 

 (S159)

 The longest body diagonal (aka largest_body_diag) of one spatial region is computed by

finding the maximum real-space distance corresponding to a change of ((ref_regions_a)-1,

±(ref_regions_b)-1, ±’(ref_regions_c)-1) in reciprocal space coordinates. The real-space distance

along these diagonals is:

     

     

     

2
A B C

1 1 1

2
A B C

2 2 2

2
A B C

3 3 3

v v v

ref _ regions _ a ref _ regions _ b ref _ regions _ c

v v v
distance

ref _ regions _ a ref _ regions _ b ref _ regions _ c

v v v

ref _ regions _ a ref _ regions _ a ref _ regions _ c

 
   

 

 
     

 

 
    

 

 (S160)

All four (±, ±’) combinations are computed and the maximum real-space distance among these

four combinations is chosen.

 The condition for two region pair images to be included in the list of interacting region

pair images is that the distance from the ‘lower left’ corner of the first region to the ‘lower left’

corner of the second region image should be ≤ (dipole_interaction_cutoff_length +

largest_body_diag). Including the largest_body_diag ensures that all points in the first region are

farther away than dipole_interaction_cutoff_length from all points in the second region image.

This list is assembled in linear-scaling computational time by using the following computational

efficiencies. First, only translation indices satisfying eqn (S154) – (S156) need to be considered

for the second region image. Second, according to eqn (S150) – (S152) the whole number of

regions along each basis vector in the reference unit cell is chosen such that the region widths

(along directions parallel to each basis vector) are as large as feasible without being greater than

one-third of the dipole_interaction_cutoff_length. This means a line segment of

dipole_interaction_cutoff_length placed parallel to a basis vector direction could completely

cross at most four regions and partially cross at most five regions. Let each region in the

reference unit cell be identified by whole number triplets in the interval ([1, ref_regions_a], [1,

ref_regions_b], [1, ref_regions_c]). Then let (region_A, region_B, region_C) be the region

indices identifying a first region in the unit cell and (i, j, k) be the region indices identifying a

second region in the reference unit cell. Then, the second region could potentially have one (or

RSC Advances S28

more) images that interact with the first region if and only if all of the following conditions are

satisfied. If periodicsumlimitA = 0, then

      max region _ A 5 ,1 i min region _ A 5 ,ref _ regions _ a    (S161)

else

   i modulo region _ A ,ref _ regi _ aБ ons  for -5 ≤ Б ≤ 5 (S162)

 If periodicsumlimitB = 0, then

      max region _ B 5 ,1 j min region _ B 5 ,ref _ regions _ b    (S163)

else

   j modulo region _ B ,ref _ regi _ bБ ons  for -5 ≤ Б ≤ 5 (S164)

If periodicsumlimitC = 0, then

      max region _ C 5 ,1 k min region _ C 5 ,ref _ regions _ c    (S165)

else

   k modulo region _ C ,ref _ regi _ cБ ons  for -5 ≤ Б ≤ 5 (S166)

 Loops over the above possibilities are performed and then a region pair image is added to

the list if and only if the computed distance from the ‘lower left’ corner of the first region to the

‘lower left’ corner of the second region image is ≤ (dipole_interaction_cutoff_length +

largest_body_diag). A first array is constructed listing pairs of regions having any interacting

images, and a second array is prepared that lists which specific images of each particular region

pair interact. The second array is constructed such that all images for a particular interacting

region pair are grouped together. Region pairs that do not interact are not included in these

arrays.

S4.5 Construct two lists of interacting atom pairs

 To construct the ‘small’ and ‘large’ lists of interacting atom pairs, the outermost loop

runs over atoms in the reference unit cell as taken from the array containing atoms grouped by

region. For each such atom, the region to which it belongs and the atom’s coordinates are loaded

from the array. A second loop, which is nested inside the first loop, runs over all second regions

that have at least one image interacting with the first region (as taken from the arrays constructed

in Section S4.4 above). The third loop, which is nested inside the second loop, runs over all

atoms in this second region. The coordinates of the second atom are loaded here. The fourth

loop, which is nested inside the third loop, runs over all potentially interacting images for the

chosen region pair (as taken from the arrays constructed in Section S4.4 above). Inside this

fourth loop, the distance between the two atoms is computed. If this distance is larger than

dipole_interaction_cutoff_length, then the program cycles to the next loop iteration. Otherwise, it

checks whether the atom pair is translationally symmetry unique. If so, the atom pair is marked

for inclusion in the ‘large’ list; otherwise, the program cycles to the next loop iteration. Then, the

distance_to_attenuation_ratio is computed for the atom pair. If distance_to_attenuation_ratio ≤

distance_to_attenuation_ratio_cutoff, then the pair is marked for inclusion in the ‘small’ list.

Then the appropriate data is written to the ‘small’ and/or ‘large’ lists if the atom pair was marked

RSC Advances S29

for inclusion in those lists, respectively. (The ‘large’ list accumulates sums over the interacting

images for a particular pair of atoms in the reference unit cell. On the other hand, the ‘small’ list

stores separate data for individual interacting atom pair images.) Then the program proceeds to

the next loop iteration. This process is continued until all iterations are complete in the four

nested loops.

References:

1. E. W. Weisstein, Positive Definite Matrix, MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/PositiveDefiniteMatrix.html, (accessed February 2019).

2. O. Axelsson and G. Lindskog, On the rate of convergence of the preconditioned

conjugate-gradient method, Numer. Math., 1986, 48, 499-523. doi:10.1007/BF01389448

3. S. F. Ashby, T. A. Manteuffel and P. E. Saylor, A taxonomy for conjugate-gradient

methods, Siam J. Numer. Anal., 1990, 27, 1542-1568. doi:10.1137/0727091

http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://doi.org/10.1007/BF01389448
http://doi.org/10.1137/0727091

