


1 Supplementary Information

3 Fig. S1. Magnetization curve of FCB/MAC. Digital image (inset) shows before (right)

4 and after (left) magnetic separation by an ordinary magnet.

6 Fig. S2. (a) Effect of initial pH on phosphate adsorption capacities of FCB/MAC and
7 final pH (the pH of the solution after adsorption equilibrium) variation of solution, (b)
8 Zeta potential of the FCB/MAC before and after phosphate sorption at different pH
9 values. Adsorption conditions: initial phosphate concentration, 50 mg P L⁻¹; pH range,
10 3.0–11.0; temperature, 25 °C; FCB/MAC dosage, 0.05 g; working volume, 50 mL;
11 contact time, 12 h.

12 Table S1.

13 List of kinetic and isotherm models.

Modles	Expression	Parameters
Pseudo-first-order	$q_t = q_e(1 - e^{-k_1 t})$	q_e, k_l
Pseudo-second-order	$q_t = \frac{k_2 q_e t^2}{1 + k_2 q_e t}$	q_e, k_2
Intraparticle diffusion	$q_t = k_{id}t^{1/2} + C$	C, k_{id}
Langmuir	$q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$	Q_m, K_L
Freundlich	$q_e = K_F C_e^{1/n}$	K_F , $1/n$
Langmuir-Freundlich	$q_{e} = \frac{Q_{m}K_{LF}C_{e}^{1/n}}{1 + K_{LF}C_{e}^{1/n}}$	$Q_m, K_{LF}, 1/n$
Redlich-Peterson	$q_e = \frac{K_R C_e}{1 + a C_e^{1/n}}$	$K_{R}, a, 1/n$
Temkin	$q_e = \frac{RT}{b} \ln(AC_e)$	<i>A</i> , <i>b</i>

Where q_t and q_e are the adsorbed amount (mg g⁻¹) at an equilibrium concentration (C_e , mg g⁻¹) and a given time of phosphate in solution, respectively. k_1 , k_2 , and k_{id} are rate constants for the pseudo-first-order (h⁻¹) and pseudo-second-order (g mg⁻¹·h⁻¹), and the intraparticle diffusion (mg g⁻¹·h^{-1/2}) rate constant, respectively. Q_m denotes the maximum adsorption capacity. K_L , K_F , K_{LF} , and K_R are the Langmuir (L mg⁻¹), Freundlich (mg g⁻¹), Langmuir-Freundlich (L mg⁻¹), and Redlich-Peterson (L mg⁻¹) constants, respectively. 1/n is the heterogeneity factor. a (L mg⁻¹) is the Redlich-Peterson isotherm constant, and b (J·g mg⁻¹) and A (L mg⁻¹) are the Temkin isotherm 22 constant.

23