Thermodynamic, Structural and Dynamic Properties of Ionic Liquids [C4mim][CF3COO], [C4mim] [Br] in condensed phase, using molecular simulations

Joel Sánchez-Badillo^a, Marco Gallo^{b*}, Ricardo A. Guirado-López^c, Jorge López-Lemus^d

^aFacultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, San Luis Potosí, C.P. 78210, México.

^bTecnológico Nacional de México/ITCJ, Av. Tecnológico No. 1340, Cd. Juárez, Chihuahua C.P. 32500, México. ^cInstituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón No. 64, San Luis Potosí, San Luis Potosí, C.P. 78000, México.

^dFacultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, C.P. 50000, México.

SUPPORTING MATERIAL

Force Field development

The classical Forcefields (FF) previously developed for the ILs studied in this work are based on the OPLS-AA [1] formalism using the following equation:

$$E = \sum_{bonds} k_r (r - r_0)^2 + \sum_{angles} k_\theta (\theta - \theta_0)^2 + \sum_{dihedrals} k_\chi [1 + \cos(n\chi - \delta)] + \sum_{i < j} \left\{ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}} \right\}$$
(1)

where the parameters k_r , k_{θ} , and k_{χ} are the force constant for bonds, angles, and dihedrals, respectively; r, θ , and χ represent the distance between two bonded atoms, the angle between three consecutively bonded atoms, and the dihedral angle between four consecutively connected atoms, respectively. r_0 , θ_0 , n, and δ are the equilibrium bond, equilibrium angle, multiplicity and phase. ϵ_{ij} and σ_{ij} are the Lennard-Jones (LJ) parameters for each pair interaction, respectively; unlike parameters, i.e $i \neq j$, were calculated with the geometric combining rule. Electrostatic interactions are calculated using fixed atomic partial charges represented by q_i and q_j . All ion charges are less than $\pm 1 e$, as indicated in Table S1 and Table S2. Atomic partial charge are an important factor to be considered for the accurate representation of ILs using molecular simulations [2]. All 1-4 LJ and 1-4 coulombic interaction are scaled by a factor of 0.5 [1]. The complete list of parameters of the FF used in this work can be found in the Supporting Information section of the following references [3] [4]. A schematic representation of the [C₄mim][PF₆], [C₄mim][BF₄], [C₄mim][NTf₂], [C₄mim][CF₃COO], [C₄mim][Br], and [C₄mim][OMs] ILs is shown in Figure S1.

The all-atom (AA) FFs previously developed within the research group, were parameterized by using a methodology focused in the calculation of the atomic electrostatic charges employing an implicit solvent scheme to represent the condensed phase, and in the parametrization of the most representative

dihedral angles by performing a simultaneous optimization between the classical FF energies obtained for the permissible molecular conformations, and the *ab-initio* molecular energies. The atomic partial charges were calculated, first by optimizing an IL dimer at the DFT M06 [5]/6-311++G(d,p) level of theory, in conjunction with the Solvation Model Density [6] incorporating the static dielectric constant for that IL, and later, by fitting the calculated charges using the Restricted Electrostatic Potential [7]

For more details about this methodology, the reader is referred to the following citation: [3]

Figure S1. Schematic representation for all ILs studied: **a)** 1-Butyl-3-methylimidazolium cation $[C_4mim]^+$ **b)** Tetrafluoroborate anion $[BF_4]^-$ **c)** Hexafluorophosphate anion $[PF_6]^-$. **d)** Bis(trifluoromethylsulfonyl)imide anion $[NTf_2]^-$ **e)** Trifluoroacetate anion $[CF_3COO]^-$ **f)** Mesylate anion $[OMs]^-$ **g)** Bromide anion $[Br]^-$.

Figure S2. Plots of reduced density gradient (*s*) vs the electron density multiplied by the sign of the second Hessian eigenvalue Sign(λ_2) ρ at 300 K. **a**) and **c**) results correspond to the [C₄mim][CF₃COO] IL; **c**) and **d**) results correspond to the [C₄mim][Br] IL. Attractive interactions are displayed in blue color, weak interactions in green color, and steric repulsions in red color. The isosurfaces correspond to a 0.5 a.u cutoff for *s* and the density color scale varies from $-0.10 < \rho < 0.10$ a.u. Steric repulsions are visualized within the center of the imidazolium ring.

Figure S3. Viscosity calculation performed in this work for the [C₄mim][OMs] IL by using NEMD simulations at 358.15 K. All the plotted points include one standard deviation. **a)** Shear viscosity against acceleration amplitudes. The continuous line corresponds to the fitted weighted linear regression. **b)** Temperature against acceleration amplitudes. The dotted line corresponds to the target temperature of 358.15 K, fixed during all NEMD simulations.

Figure S4. Thermal conductivity calculated for the $[C_4mim][Br]$ IL in this work by using RNEMD simulations. **a)** Thermal conductivity as a function of simulation time. The thermal conductivity calculated at each step is displayed as dotted line. The time averaged value is displayed as continuous line. **b)** Temperature profile along the *z* box length. Each plotted point corresponds to the temperature reached in each slab, and includes one standard deviation.

Atom	[C4mim][BF4]	[C ₄ mim][PF ₆]	[C ₄ mim][NTf ₂]	[C ₄ mim][CF ₃ COO]	[C4mim][OMs]	[C4mim][Br]
N _{1,2}	0.1967	0.1938	0.2530	0.1705	0.2985	0.1583
N ₃			-0.5874			
C_1	-0.0656	-0.0417	-0.1649	-0.0238	-0.1893	0.0756
C _{2,3}	-0.2234	-0.2318	-0.2166	-0.2241	-0.2381	-0.2278
C_4	-0.3250	-0.2473	-0.3454	-0.2639	-0.3378	-0.3449
C_5	0.0738	0.0833	0.1592	0.0803	0.0353	0.0177
C_6	0.1667	0.1661	0.1017	0.1673	0.1843	0.1480
C7	-0.3484	-0.3324	-0.4158	-0.2967	-0.3247	-0.3524
C8	-0.2271	-0.2531	-0.2905	-0.3322	-0.3330	-0.2221
C ₉			0.4618			
C10				0.5459		
C11				0.7034		
C ₁₂					-0.5944	
H_1	0.2173	0.1957	0.2735	0.2193	0.2446	0.1266
H _{2,3}	0.2485	0.2557	0.2264	0.2451	0.2281	0.2536
H _{4,5}	0.1513	0.1278	0.1406	0.1311	0.1561	0.1587
H6,7	0.0192	0.0037	-0.0034	0.0127	0.0212	0.0381
H8,9	-0.0091	-0.0104	0.0130	-0.0123	-0.0127	0.0031
H ₁₀₋₁₂	0.0834	0.0804	0.1069	0.0671	0.0747	0.0853
H_{13-15}	0.1283	0.1358	0.1389	0.1603	0.1468	0.1279
H ₁₆₋₁₈					0.1912	
В	0.9600					
Р		1.1714				
F_1	-0.4633					
F ₂		-0.3447				
F ₃			-0.1564			
F_4				-0.2392		
S_1					1.2347	
S_2			0.8273			
0_{1}					-0.6880	
02			-0.4834			
03				-0.7051		
BR						-0.8561
Total	± 0.8932	<u>+</u> 0.8968	± 0.8812	± 0.8785	± 0.8501	± 0.8561

Table S1. Atomic charges (e) for the IL studied^{*a,b,c*}

^aSee atomic labels in Figure S1. ^bTaken from previously published works in refs. [3] [4].

Atom	[C ₄ mim][NTf ₂]	[C ₄ mim][CF ₃ COO]	[C ₄ mim][OMs]	[C ₄ mim][Br]
N _{1,2}	0.2297	0.1553	0.2809	0.1479
N ₃	-0.5332			
C_1	-0.1497	-0.0217	-0.1781	0.0706
C _{2,3}	-0.1966	-0.2041	-0.2240	-0.2129
C_4	-0.3136	-0.2404	-0.3178	-0.3223
C ₅	0.1445	0.0731	0.0332	0.0165
C_6	0.0923	0.1524	0.1735	0.1383
C7	-0.3775	-0.2702	-0.3056	-0.3293
C8	-0.2637	-0.3026	-0.3134	-0.2075
C9	0.4191			
C10		0.4971		
C11		0.6405		
C_{12}			-0.5594	
H_1	0.2483	0.1997	0.2302	0.1183
H _{2,3}	0.2055	0.2232	0.2147	0.2370
H4,5	0.1276	0.1194	0.1469	0.1484
H6,7	-0.0031	0.0116	0.0200	0.0356
H8,9	0.0118	-0.0112	-0.0120	0.0029
H ₁₀₋₁₂	0.0971	0.0611	0.0703	0.0797
H_{13-15}	0.1261	0.1460	0.1381	0.1195
H ₁₆₋₁₈			0.1799	
В				
Р				
F_1				
F ₂				
F3	-0.142			
F_4		-0.2178		
S_1			1.1619	
S ₂	0.7511			
01			-0.6474	
02	-0.4388			
03		-0.6421		
RK				-0.8000

Table S2. Scaled atomic charges to ±0.8*e* for the [C₄mim][NTf₂], [C₄mim][CF₃COO], [C₄mim][Br], and [C₄mim][OMs] ILs studied in this work.^{*a,b,c*}

^aSee atomic labels in Figure S1.
^bScaled ±0.8 charges were used to calculate <u>only</u> the self-diffusion coefficient for this set of ILs.

References.

- [1] W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, "Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids," *J. Am. Chem. Soc.*, vol. 118, pp. 11225-11236, 1996.
- [2] P. A. Hunt, "The simulation of imidazolium-based ionic liquids," Mol. Simul., vol. 32, pp. 1-10, 2006.
- [3] S. Hernández-Ríos, J. Sánchez-Badillo, M. Gallo, P. López-Albarran, J. Gaspar-Armenta and R. González-García, "Thermodynamic Properties of the 1-Butyl-3-methylimidazolium Mesilate Ionic Liquid [C4mim][OMs] in Condensed Phase, Using Molecular Simulations," *J. Mol. Liq*, vol. 244, pp. 422-432, 2017.
- [4] A. D. Miranda, M. Gallo, J. M. Domínguez, J. Sánchez-Badillo and R. Martínez-Palou, "Experimental and Theoretical Assessment of the Interactions of Ionic Liquids (ILs) with Fluoridated Compounds (HF, R-F) in Organic Medium," J. Mol. Liq., vol. 276, pp. 779-793, 2019.
- [5] Y. Zhao and D. G. Truhlar, "Density Functionals with Broad Applicability in Chemistry," *Acc. Chem. Res.*, vol. 41, pp. 157-167, 2008.
- [6] A. V. Marenich, C. J. Cramer and D. G. Truhlar, "Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions," *J. Phys. Chem. B*, vol. 113, pp. 6378-6396, 2009.
- [7] C. I. Bayly, P. Cieplak, W. D. Cornell and P. A. Kollman, "A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model," *J. Phys. Chem.*, vol. 97, pp. 10269-10280, 1993.