Supporting Information

The formation mechanism of Uranium and Thorium Hydride

Phosphorus: A Systematically Theoretical Study

Huifeng Zhao,^a Peng Li, *a,c Meigang Duan, ^a Feng Xie^b and Jie Ma^{a,c}

^a School of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China, E-mail: <u>lip@sxu.edu.cn</u>

^b Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China

^c Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Table S1 Comparison of observed values and calculated harmonic frequencies for H₂UPH.

Table S2 Comparison of observed values and calculated harmonic frequencies for H₂ThPH.

Table S3 Comparison of the calculation results of the bond length and energy about U+PH₃.

Table S4 Comparison of the calculation results of the bond length and energy about Th+PH₃

Table S5 Relative energies (kcal/mol) of the stationary points on the U+PH₃.

Table S6 Relative energies (kcal/mol) of the stationary points on the Th+PH₃.

Table S7 Mayer bond order analysis for the reaction of U+PH₃.

Table S8 Mayer bond order analysis for the reaction of Th+PH₃.

Table S9 Topological properties of the charge density calculated in the reaction of Th+PH₃.

Fig. S1 Comparison of observed values and calculated harmonic frequencies for H₂UPH.

Fig. S2 Comparison of observed values and calculated harmonic frequencies for H₂ThPH.

Fig. S3 Structures and selected geometric parameters of MECP on the U+PH₃ potential energy surface.

Fig. S4 Optimized Cartesian x, y, z coordinates for the reaction of U+PH₃.

Fig. S5 the IRC curve corresponding to TS imaginary frequency of U+PH₃.

Fig. S6 Optimized Cartesian x, y, z coordinates for the reaction of Th+PH₃.

Fig. S7 the IRC curve corresponding to TS imaginary frequency of Th+PH₃.

References

2X-ZORA	2X-ZORA/def2-TZVPP-SARC level of theory. [d] Observed argon matrix frequencies. ³								
Method				Har	monic frequ	encies (cm ⁻¹)			
B3LYP ^[a]	1990.5	1495.5	1472.6	761.9	471.2	428.6	350.9	268.8	211.5
PW91 ^[a]	1917.4	1518.3	1493.0	949.0	473.9	446.7	366.3	321.7	239.3
TPSS ^{4[a]}	2001.6	1533.9	1498.1	972.0	746.7	509.7	457.9	349.3	274.9
B3PW91 ^[a]	1944.7	1508.6	1482.9	904.7	480.7	440.1	375.7	295.1	263.9
PBE0 ^{5[a]}	2020.4	1573.7	1544.7	927.6	503.3	461.7	402.5	325.1	272.4
B3LYP ^[b]	2052.9	1549.3	1524.4	790.5	487.2	450.8	365.7	282.7	240.0
PW91 ^[b]	1925.9	1522.5	1498.5	937.3	473.5	450.4	366.6	317.3	230.8
TPSS ^[b]	2096.9	1550.5	1529.8	1164.5	822.6	520.5	461.5	350.3	270.8
B3PW91 ^[b]	2024.6	1566.1	1540.3	920.6	500.5	463.3	393.2	326.0	268.3
PBE0 ^[b]	2029.8	1575.3	1546.5	964.2	504.8	468.1	406.8	336.6	281.7
M06-2X[c]	2031.7	1526.3	1473.0	790.4	494.3	443.8	402.2	357.9	246.5
Expt. ^[d]		1473.7	1456.5						

Table S1 Comparison of observed values and calculated harmonic frequencies for H₂UPH. [a]SDD for U and aug-cc-pVTZ for H and P atoms. [b]SDD for U and 6-311++G (d, p)^{1,2} for H and P atoms. [c]M06-2X-ZORA/def2-TZVPP-SARC level of theory. [d] Observed argon matrix frequencies.³

Table S2 Comparison of observed values and calculated harmonic frequencies for H_2 ThPH. [a]SDD for Th and aug-cc-pVTZ for H and P atoms. [b]SDD for Th and 6-311++G (d, p) for H and P atoms. [c] M06-2X-ZORA/def2-TZVPP-SARC level of theory. [d]Ref. [3], Observed argon matrix frequencies.

Method	Harmonic frequencies (cm ⁻¹)								
B3LYP ^[a]	2104.6	1489.9	1448.4	757.0	495.7	438.5	400.3	342.8	236.0
PW91 ^[a]	2018.1	1482.2	1442.3	831.0	489.1	445.9	402.1	352.5	247.9
TPSS ^[a]	2049.2	1510.8	1460.7	851.5	514.3	446.2	399.7	343.9	260.2
B3PW91 ^[a]	2091.0	1524.2	1474.9	818.7	510.9	444.7	406.0	346.9	261.1
PBE0 ^[a]	2099.4	1533.1	1484.2	843.9	514.2	449.1	409.9	351.2	265.1
B3LYP ^[b]	2100.6	1493.5	1451.2	752.4	497.1	439.4	400.7	344.8	233.8
PW91 ^[b]	2018.6	1492.5	1443.8	822.8	489.0	447.3	403.4	355.4	251.3
TPSS ^[b]	2050.8	1513.5	1464.3	842.6	514.1	446.8	400.7	347.9	264.1
B3PW91 ^[b]	2089.6	1528.6	1478.9	811.9	511.0	445.3	407.0	351.2	264.1
PBE0 ^[b]	2100.5	1536.4	1487.7	833.6	513.9	449.6	410.8	355.2	268.3
M06-2X[c]	2065.1	1507.4	1473.4	766.3	479.2	429.7	389.4	346.3	258.0
Expt. ^[d]		1467.2	1436.6						

Table S3 Comparison of the calculation results of the bond lengths (Å) and relative PW91 energies (kcal/mol) of the complex II and the complex III about $U+PH_3$ obtained in ref. [3] and the calculation results of this paper. [a] Calculations used the SDD for U and aug-cc-pVTZ for H and P atoms. [b] Obtained from ref. [3].

property	B3LYP ^[a]	PW91 ^[a]	B3PW91 ^[a]	B3LYP ^[b]	PW91 ^[b]
r(U-P)	2.760	2.661	2.716	2.762	2.662
$r(U-H_1)$	2.041	2.022	2.033	2.046	2.030
r(P-H ₂)	1.444	1.473	1.450	1.436	1.467
r(P-H ₃)	1.453	1.481	1.461	1.446	1.477
Energy		0.00			0.00
r(U-P)	2.465	2.446	2.434	2.459	2.444
r(U-H ₁)	1.996	1.990	1.984	1.997	1.992
r(U-H ₂)	2.011	2.001	1.996	2.010	2.004

r(P-H ₃)	1.471	1.496	1.481	1.468	1.491
Energy		6.52			0.10

Table S4 Comparison of the calculation results of the bond lengths (Å) and relative PW91 energies (kcal/mol) of the complex II and the complex III about $Th+PH_3$ obtained in ref. [3] and the calculation results of this paper. [a] Calculations used the SDD for Th and aug-cc-pVTZ for H and P atoms. [b] Obtained from ref. [3].

property	B3LYP ^[a]	PW91[a]	B3PW91 ^[a]	B3LYP ^[b]	PW91 ^[b]	CCSD(T) ^[b]		
the complex II								
r(Th-P)	2.759	2.665	2.710	2.735	2.660	2.749		
r(Th-H ₁)	2.064	2.058	2,.062	2.024	2.025	2.037		
r(P-H ₂)	1.453	1.481	1.462	1.420	1.454	1.421		
r(P-H ₃)	1.453	1.481	1.462	1.461	1.508	1.464		
Energy		22.68			22.80			
			the complex III					
r(Th-P)	2.775	2.741	2.702	2.530	2.512	2.538		
r(Th-H ₁)	2.068	2.060	2.066	2.056	2.048	2.058		
r(Th-H ₂)	2.068	2.060	2.066	2.065	2.054	2.068		
r(P-H ₃)	1.470	1.478	1.470	1.460	1.477	1.467		
Energy		0.00			0.00			

Table S5 Relative energies (kcal/mol) of the stationary points on the U+PH₃. [a]Calculations used the SDD for U and aug-cc-pVTZ for H and P atoms. [b] M06-2X-ZORA/def2-TZVPP-SARC level of theory.

	Ι	TS1	II	TS2a	III	TS2b	IV
B3LYP ^[a]	30.66	34.80	0.00	16.04	6.52	13.89	12.49
PW91 ^[a]	27.83	31.99	0.00	13.80	11.19	7.05	6.35
B3PW91 ^[a]	30.12	30.38	0.00	15.86	15.67	5.65	5.48
M06-2X ^[b]	21.49	32.27	0.00	11.44	10.72	6.87	5.29
<s<sup>2></s<sup>	3.04	2.99	2.94	2.71	2.10	2.99	2.97

Table S6 Relative energies (kcal/mol) of the stationary points on the Th+PH₃. [a] Calculations used the SDD for Th and aug-cc-pVTZ for H and P atoms. [b] M06-2X-ZORA/def2-TZVPP-SARC level of theory.

	Ι	TS1	II	TS2a	III	TS2b	IV
B3LYP ^[a]	33.04	38.95	0.00	12.16	3.06	14.99	8.76
PW91 ^[a]	34.51	39.23	0.00	13.14	5.85	7.21	3.98
B3PW91 ^[a]	35.59	41.14	0.00	13.54	5.19	11.66	7.32
M06-2X ^[b]	27.03	34.74	0.00	15.47	6.05	14.86	8.42
<s<sup>2></s<sup>	2.02	2.02	2.00	2.01	2.06	2.00	2.01

Table S7 Mayer bond order analysis for all of the minima and transition states involved in the reaction of $U+PH_3$ at the M06-2X-ZORA/def2-TZVPP-SARC level of theory.

Species	Ι	TS1	Π	TS2a	III	TS2b	IV
U-P	0.462	0.749	1.011	1.716	2.197	1.559	2.028

P-H1	0.964	0.623					
P-H2	0.926	0.892	0.899	0.241		0.389	0.070
Р-Н3	0.926	0.916	0.904	0.826	0.767	0.827	0.794
U-H1		0.311	0.923	0.934	0.947	0.462	0.107
U-H2	Species	$\rho(r)$	$0.093 \nabla^2 \rho(r)$	0.710	G(r) = 0.948	V(r) 0.209	$H(r)^{109}$
U-H3 I(¹ A) H1-H2	Th-P	0.065	0.088 0.134	0.149	0.050 0.217	-0.067 0.425	0.206 -0.017 0.856
	P-H1	0.161	-0.081		0.130	-0.281	-0.150
	P-H2	0.161	-0.081		0.130	-0.281	-0.150
	P-H3	0.154	-0.039		0.130	-0.270	-0.140
Species	I TSI'	1I'	TS1 0.138	II	TS2a	111 TS2b	IV
Th-P	1.207 1.286	1.325	1.431	1.635	1.990	2.154 1.605	2.165
P-H1	0.892 ^{P-H1} 0.875	001560	0.0940.016		0.138	-0.280	-0.142
P-H2	0.874 P-H2 0.871	001958	0.92 3 0.046	0.844	0.1042259	-0.298 0.412	-0.155
P-H3	0.874 _{P-H3} 0.871	0.01833	0.93 <u>8</u> 0.046	0.844	0.194328	0.8 <u>0</u> 1.298 0.809	-0.1550.788
Th _T H1	0.117 _{Th-P} 0.142	0.863	0.873	0.934	$0.043^{0.939}$	$0.948_{-0.080}$ 0.512	-0.026
Th-H2	0.056 0.052	0.079	0.077	0.166	0.778	0.947 0.229	0.179
Th-H3	0.056 ^{Th-H1} 0.052	0.098	0.030	0.166	0.048	$0.196^{-0.088}$ 0.179	-0.040 0.218
H1-H2	P-H2	0.164	0.001		0.152	-0.304 0.402	-0.1520.752
	Р-Н3	0.159	0.023		0.149	-0.293	-0.144
TS1(¹ A)	Th-P	0.084	0.050		0.044	-0.080	-0.032
	Th-H1	0.109	-0.020		0.045	-0.095	-0.050

Table S8 Mayer bond order analysis for all of the minima and transition states involved in the reaction of Th+PH₃ at the M06-2X-ZORA/def2-TZVPP-SARC level of theory.

	P-H2	0.162	0.027	0.155	-0.302	-0.148
	Р-Н3	0.167	0.027	0.162	-0.316	-0.155
$II(^{1}A)$	Th-P	0.087	0.020	0.037	-0.068	-0.031
	Th-H1	0.097	0.004	0.040	-0.080	-0.040
	P-H2	0.142	-0.007	0.121	-0.244	-0.123
	Р-Н3	0.142	-0.006	0.121	-0.244	-0.123
TS2a(¹ A)	Th-P	0.110	0.012	0.054	-0.105	-0.051
	Th-H1	0.083	0.032	0.036	-0.065	-0.028
	Th-H2	0.073	0.088	0.044	-0.065	-0.022
	P-H3	0.163	0.012	0.152	-0.301	-0.149
III(¹ A)	Th-P	0.099	0.038	0.052	-0.094	-0.042
	Th-H1	0.088	0.029	0.039	-0.071	-0.032
	Th-H2	0.089	0.027	0.040	-0.072	-0.033
	Р-Н3	0.137	0.064	0.131	-0.246	-0.115
TS2b(³ A)	Th-P	0.093	0.041	0.048	-0.086	-0.038
	Th-H1	0.070	0.100	0.043	-0.062	-0.018
	P-H2	0.087	-0.040	0.024	-0.058	-0.034
	Р-Н3	0.141	0.042	0.131	-0.251	-0.120
	H1-H2	0.133	-0.256	0.028	-0.119	-0.092
IV(³ A)	Th-P	0.101	0.031	0.052	-0.097	-0.044
	Р-Н3	0.136	0.040	0.124	-0.237	-0.114
	H1-H2	0.236	-0.929	0.010	-0.253	-0.242

Table S9 Topological properties of the charge density calculated at the (3, -1) BCPs for all species involved in the reaction of Th+PH₃ at the B3LYP/SDD/aug-cc-pVTZ level of theory. (ρ (bcp) and $\nabla^2 \rho$ (bcp) in a.u.)

Fig. S1 Comparison of observed values and calculated harmonic frequencies and the corresponding vibration direction for H_2 UPH. Expt, Ref. [3], Observed argon matrix frequencies. Harmonic frequency in cm⁻¹.

Fig. S2 Comparison of observed values and calculated harmonic frequencies and the corresponding vibration direction for H₂ThPH. Expt, Ref. [3], Observed argon matrix frequencies. Harmonic frequency in cm^{-1} .

Fig. S3 Structures and selected geometric parameters of MECP (3-5) on the U+PH₃ potential energy surface. Bond distances are Å and angles are in degree.

Fig. S4 Optimized Cartesian x, y, z coordinates for the reaction of U+PH₃ at the B3LYP/SDD/aug-cc-pVTZ level of theory.

TS2a(³A)

	Х	у	Z
U	-0.34695300	-0.00977000	-0.02972500
Р	2.11719900	-0.06855200	0.00655200
Н	-0.53948400	1.82895400	0.72513000
Н	-0.83456900	-1.13958600	1.56139100
Н	1.53572000	1.23775500	0.34993000

III(³A)

	Х	у	Z
U	-0.39173800	-0.02120200	-0.00412900
Р	2.19214900	-0.07885100	-0.07145900
Н	1.64850400	-0.33897100	1.26743400
Н	0.31975600	2.00367700	0.12388700
Н	1.18940900	1.46862800	0.06047700

TS2b(⁵A)

	Х	у	Z
U	0.37316500	-0.03537300	-0.00317400
Р	-2.14156500	-0.07643900	-0.06617200
Н	-1.56664500	-0.05250800	1.29409000
Н	-0.68906000	2.08536100	-0.01509900
Н	0.04796800	2.36806800	0.00558900

Fig. S5 The IRC curve corresponding to TS imaginary frequency of U+PH₃ at the B3LYP/SDD/aug-cc-

property	imaginary frequency	intrinsic reaction coordinate image		
TS1 -867.9 cm ⁻¹	200 010	Total Energy along IRC		
		- 020.020 - 020.020 		
	8)			
		Z -820.000		

IV(⁵A)

Fig. S6 Optimized Cartesian x, y, z coordinates for the reaction of Th+PH₃ at the B3LYP/SDD/aug-ccpVTZ level.

	Х	у	Z
Th	-0.48734100	-0.00001300	0.00000200
Р	2.31352300	-0.00026100	-0.00000400
Н	3.05420400	-0.38472700	1.15732600
Н	3.04872400	1.19755300	-0.24417700
Н	3.05493600	-0.80770400	-0.91329300

х

-0.43822200

2.17323500

3.15956700

2.99442000

0.68745100

х

0.44427300

-2.25289900

-2.90066300

-2.78794100

-0.50250500

Х

-0.40555500

2.30171400

1.84312100

1.89336300

-1.84600300

Th

Р

Η

Η

Η

Th

Р

Η

Η

Η

Th

P H

Η

Н

I(³A)

	х	у	Z
Th	0.45294500	-0.00134800	-0.00255300
Р	-2.18059700	-0.02816800	-0.05829000
Н	-3.19211500	0.93947100	-0.40294100
Н	-3.15138100	-1.01121900	0.35290300
Н	-1.71259500	0.61557100	1.15417300

у

-0.01032900

-0.03187900

0.97379600

-1.18911800

1.62308100

-0.01281600

-0.01453000

0.87840900

-1.23264600

1.72566100

y

-0.01996800

0.13890300

-0.74366400

-0.83637500

1.41576600

z

0.00000600

-0.00011500

0.00078800

0.00052900

-0.00011600

z

0.00389200

-0.09493000

0.79159300

0.40506700

-0.12299000

Z

-0.01017500

-0.00215000

-1.07635000

1.00291700

-0.12997500

TS1'(¹A)

II'(¹A)

TS1(¹A)

II(³ A)		x	v	Z
	Th	-0.38643300	-0.02488700	0.00135600
~ > >	P	2.15518500	-0.06896500	-0.07445600
	Н	-1.49996900	1.64493500	-0.47505900
	Н	2.82783300	1.17395900	0.05305800
T62~(3A)	Н	1.12334600	0.45537600	1.41678200
152a(°A)				
A		x	у	Z
	Th	0.36345000	-0.00607600	-0.03010100
	Р	-2.16910400	-0.06950200	0.00996300
-	Н	0.79782000	-1.45978500	1.36952400
4	Н	0.65296000	1.78080600	0.94381900
	Н	-1.62469100	1.26839600	0.24627800
III(³ A)				
	771	X	y	Z
	In	-0.40186500	-0.02084800	-0.00465500
	P	2.19768000	-0.0/062/00	-0.0/33/200
	H	1.66524500	-0.48031200	1.23155500
—	Н	0.31097600	1.98318000	0.16791300
a	Н	1.22644600	1.43284700	0.12008500
TS2b(³ A)				
		x	y	Z
7	Th	-0.36126600	-0.05717000	-0.00267400
	Р	2.15697200	0.03848700	-0.06788800
	Н	1.59765800	0.07806400	1.29439100
	Н	-0.69906500	2.24987800	0.38198500
	Н	-0.73925200	2.24004900	-0.41741500
IV(³ A)		·	•	

Fig. S7 The IRC curve corresponding to TS imaginary frequency of $Th+PH_3$ at the B3LYP/SDD/aug-cc-pVTZ level of theory.

property	imaginary frequency	intrinsic reaction coordinate image
TS1'	-339.8 cm ⁻¹	Total Energy along IRC -750. 740 -750. 750 -750. 760 -750. 760 -750. 780 -750. 780
TS1	-157.3 cm ⁻¹	Total Energy along IRC -750.798 -750.798 -750.800 -750.804 -750.804 -750.804 -750.806 -750.806 -750.810 -7

References

4 J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.

¹ R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980., 72, 650-654.

² J. P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom, J. Chem. Phys., 1997., 107, 5016-5021

³ L. Andrews, H. G. Cho, K. S. Thanthiriwatte, D. A. Dixon, Inorg. Chem., 2017, 56, 2949-2957.

⁵ C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.