Supporting Information for:

A Bromine-Catalysis-Synthesized Poly(3,4-
 ethelenedioxythiophene) /Graphitic Carbon Nitride
 Electrochemical Sensor for Heavy Metal Ion Determination

Wei Wu ${ }^{\text {ab }}$, Ahmat Ali ${ }^{\text {ab }}$, Ruxangul Jamal ${ }^{*}$ ab, Mihray Abdulla ${ }^{\text {ab }}$, Tursunnisahan Bakri ${ }^{a b}$ and Tursun Abdiryim *ab
${ }^{a}$ Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of
China, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi
830046, People's Republic of China
${ }^{\mathrm{b}}$ Key Laboratory of Functional Polymers, Xinjiang University, Urumqi 830046,

People's Republic of China

* Corresponding author: Tel.: +8609918582809 fax: +8609918582809

E-mail: tursunabdir@sina.com.cn;iruxangul@xju.edu.cn

Fig. S1. TEM images of (a) $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (b) PEDOT (BCP), (c) PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (BCP), (d) PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (SSP), (e) PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (MOP).

Fig.S2. DPV of PEDOT (BCP), g-C ${ }_{3} \mathrm{~N}_{4}$, PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (BCP, SSP, MOP) composite-modified GCE in 0.1 M ABS $(\mathrm{pH}=4.5)$ containing $2 \mu \mathrm{M}$ of Cd^{2+} and Pb^{2+}. Deposition potential: -1.2 V , deposition time: 180 s , pulse width: 50 ms ; pulse period: 100 ms ; increment potential: 2 mV .

Fig.S3. DPV response of the PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (SSP) composite-modified GCE for the individual analysis of $(\mathbf{a}) \mathrm{Cd}^{2+}(\mathbf{b}) \mathrm{Pb}^{2+}$. The inset shows their linear equations as well as correlation coefficient.

Fig.S4. DPV response of the PEDOT/10wt $\% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (MOP) composite-modified GCE for the individual analysis of (a) Cd^{2+} (b) Pb^{2+}. The inset shows their linear equations as well as correlation coefficient.

Fig.S5. DPV response of the PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (SSP) composite-modified GCE for the simultaneous analysis of Cd^{2+} and $\mathrm{Pb}^{2+}(\mathbf{b})$ the respective calibration curves of Cd^{2+} and Pb^{2+}.

Fig.S6. (a) DPV response of the PEDOT $/ 10 \mathrm{wt} \% \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (MOP) composite-modified GCE for the simultaneous analysis of Cd^{2+} and $\mathrm{Pb}^{2+}(\mathbf{b})$ the respective calibration curves of Cd^{2+} and Pb^{2+}.

