Protecting group-directed annulations of tetra-substituted oxindole

olefins and sulfur ylides: regio- and chemoselective synthesis of

cyclopropane- and dihydrofuran-fused spirooxindoles

Jing-Wen Kang,^{‡a} Xiang Li,^{‡a} Fei-Yu Chen,^a Yuan Luo,^a Shu-Cang Zhang,^a Bin Kang,^a Cheng

Peng,^a Xu Tian*^b and Bo Han*^a

^aState Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. *E-mail: hanbo@cdutcm.edu.cn*

^bKey Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China. *E-mail: xtian@gzhmu.edu.cn*

‡ These authors contributed equally to this work.

Supporting Information

Table of Contents

1. General method	S2
2. Investigation of the influence of protecting groups (Table S1)	S2
3. General procedure for the synthesis of spirooxindole compounds 6	S6
4. General procedure for the synthesis of spirooxindole compounds 10	S12
5. Crystal data of 6r and 10a	S19
6. NMR spectra and HPLC chromatograms	S21

1. General method

NMR spectroscopic data were obtained for ¹H at 400 MHz or ¹³C at 100 MHz, or for ¹H at 600 MHz or ¹³C at 150 MHz. Chemical shifts were reported in parts per million (ppm) from tetramethylsilane utilizing solvent resonance in CDCl₃ solution as the internal standard. ESI was performed on a Waters SYNAPT G2 as the ionization method. ESI-HRMS spectra were measured according to a Q-TOF instrument. Column chromatography was performed on silica gel (200–300 mesh) using an eluent of ethyl acetate and petroleum ether. Melting points were mensurated by a Mel-Temp apparatus, and were not accuracy in one hundred percent. All reactions were monitored by thin layer chromatography (TLC) with silica gelcoated paltes; and products were visualized using UV light.

	O O O O O O O O O O O O O O O O O O O	0 s	RT MeCN Ph COCH N Ph COCH N PG	³ ³ ⁴ H ₃ COC ⁴ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰	
	tetra-substituted oxoindole olefin	4a	Product A	Product B	
Entry	PG		Yield $(\%)^b$	d.r. ^{<i>c</i>}	
			product A/B	product A/B	
1	TT		45/40	0 1/10 1	
-	H		45/48	8:1/10:1	
2	H Me		45/48 10/44	8:1/10:1 1:1/8:1	
2 3	H Me Allyl		45/48 10/44 12/45	8:1/10:1 1:1/8:1 1:1/5:1	
2 3 4	H Me Allyl Bn		45/48 10/44 12/45 19/48	8:1/10:1 1:1/8:1 1:1/5:1 7:1/9:1	
2 3 4 5	H Me Allyl Bn Ac		45/48 10/44 12/45 19/48 36/11	8:1/10:1 1:1/8:1 1:1/5:1 7:1/9:1 20:1/10:1	

2. Investigation of the influence of protecting groups (Table S1)^{*a*}

^{*a*} Unless otherwise noted, all reactions were performed with tetra-sustituted oxoindole olefin (0.15 mmol), **4a** (0.165 mmol) in 2 mL MeCN at room temperature for 2 h; ^{*b*} Isolated yields of the product **A** and **B**; ^{*c*} The diastereoselective ratio of the product **A** and **B** were calculated based on ¹H-NMR analysis of the crude reaction mixture.

We screened a broad type of protecting groups including methyl (-Me), allyl, acetyl (-Ac), benzyl (-Bn) and tert-butyloxycarboryl (-Boc) groups to investigate the influence on chemo- and regioselectivity. Generally, *N*-Bn and *N*-Boc substrates showed the best tendency on the synthesis of dihydrofuran- and cyclopropane-fused spirooxindole respectively (B4/A6) in 48% yields with high diastereoselectivities of 9:1 and up to 12:1 dr values (Table S1, entry 4 and 6). The tetra-

substituted oxoindole olefins with *N*-Me and *N*-Allyl protecting groups both produced cyclopropane-fused spirooxindoles **A2/A3** in low yields with very poor diastereoselective value of 1:1, while demonstrating good reaction performance for the synthesis of products **B2/B3** with 8:1 and 5:1 dr values (entry 2 and 3). Besides, in spite of high diastereoselectivity, *N*-Ac protected tetra-substituted oxoindole olefin did not react well at this condition resulting products **A5/B5** in a low yield (entry 5). Hence, we chose *N*-Bn- and *N*-Boc-protected oxoindole olefins as model substrates for the construction of desirable dihydrofuran- and cyclopropane-fused spirooxindoles respectively.

A2 was obtained according to the similar procedure. White solid, 10% yield (5.4 mg). The diastereomeric ratio was determined to be 1:1 by crude ¹H-NMR analysis. m.p. 158–159 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.78 (dd, J = 8.4, 1.2 Hz, 2H), 7.51 (tt, J = 7.8, 1.2 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.29 (td, J = 7.8, 1.2 Hz, 1H), 6.99 (td, J = 7.8, 0.6 Hz, 1H), 6.89 (dd, J = 15.0, 7.8 Hz, 2H), 4.25 (s, 1H), 3.16 (s, 3H), 2.58 (s, 3H), 2.07 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 198.1, 192.2, 169.5, 144.3, 136.5, 133.7, 129.3, 128.9, 128.6, 128.3, 126.5, 122.6, 120.6, 108.7, 63.5, 43.5, 40.9, 32.3, 29.9,

28.9, 27.0; ESI HRMS: calcd. For C₂₂H₁₉NO₄Na⁺ 384.1212, found 384.1214.

A3 was obtained according to the similar procedure. White solid, 12% yield (7.0 mg). The diastereomeric ratio was determined to be 1:1 by crude ¹H-NMR analysis. m.p. 159–160 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.76 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.52 – 7.48 (m, 1H), 7.44 – 7.40 (m, 2H), 7.24 (td, *J* = 7.8, 1.2 Hz, 1H), 6.97 (td, *J* = 7.2, 0.6 Hz, 1H), 6.86 (d, *J* = 3.0 Hz, 1H), 5.67 – 5.61 (m,

1H), 5.30 (s, 1H), 5.08 (dt, J = 10.8, 1.2 Hz, 2H), 4.40 – 4.36 (m, 1H), 4.25 – 4.23 (m, 2H), 2.61 (s, 3H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 198.2, 197.9, 192.1, 171.6, 143.5, 131.0, 129.2, 128.9, 128.7, 128.3, 126.5, 122.5, 120.7, 117.9, 109.6, 63.6, 43.6, 42.7, 29.9, 28.4; ESI HRMS: calcd. For C₂₄H₂₁NO₄Na⁺ 410.1368, found 410.1366.

A4 was obtained according to the similar procedure. White solid, 19% yield (12.5 mg). The diastereomeric ratio was determined to be 7:1 by crude ¹H-NMR analysis. m.p. 147–148 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (dd, *J* =

8.4, 1.2 Hz, 2H), 7.55 (t, J = 7.8 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.33 -

7.30 (m, 2H), 7.29 (d, J = 6.6 Hz, 3H), 7.17 (td, J = 7.8, 1.2 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.95 (td, J = 7.8, 1.2 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 5.02 (d, J = 15.6 Hz, 1H), 4.95 (d, J = 15.6 Hz, 1H), 4.31 (s, 1H), 2.38 (s, 3H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 198.0, 196.3, 192.0, 171.9, 143.3, 136.5, 135.4, 134.1, 128.9, 128.8, 128.6, 128.5, 127.9, 127.3, 126.3, 122.5, 120.6, 109.3, 99.9, 62.5, 44.3, 43.8, 29.9, 28.4; HRMS (ESI) m/z calcd for C₂₈H₂₃NO₄Na⁺ 460.1525, found 460.1526.

A5 was obtained according to the similar procedure. White solid, 36% yield (21.0 mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 169–170 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.27 (d, J = 7.8 Hz, 1H), 7.89 (dd, J = 8.4, 1.2 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.47 – 7.42

(m, 2H), 7.33 - 7.29 (m, 1H), 7.11 (td, J = 7.8, 0.6 Hz, 1H), 7.05 (dd, J = 7.8, 1.2 Hz, 1H), 4.29 (s, 1H), 2.69 (s, 3H), 2.36 (s, 3H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.7, 195.7, 191.5, 173.5, 170.3, 140.9, 136.5, 134.4, 129.2, 129.0, 128.5, 125.9, 124.9, 120.0, 116.2, 63.2, 44.5, 43.2, 29.9, 28.5, 27.1; ESI HRMS: calcd. For C₂₃H₁₉NO₅Na⁺ 412.1162, found 412.1164.

B2 was obtained according to the similar procedure. White solid, 44% yield (23.9 mg). The diastereomeric ratio was determined to be 8:1 by crude ¹H-NMR analysis. m.p. 163–164 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.40 (tt, *J* = 7.2, 1.8 Hz, 1H), 7.22 – 7.17 (m, 4H), 7.04 (ddd, *J* = 7.2, 6.6, 2.4 Hz,

1H), 6.92 - 6.89 (m, 2H), 6.31 (d, J = 7.8 Hz, 1H), 6.25 (s, 1H), 2.97 (s, 3H), 2.54 (s, 3H), 2.09 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.9, 191.3, 117.0, 170.1, 142.7, 135.0, 133.4, 129.1, 128.2, 127.4, 127.0, 124.5, 122.9, 118.1, 107.6, 89.3, 61.9, 28.9, 26.5, 15.9; ESI HRMS: calcd. For C₂₂H₁₉NO₄Na⁺ 384.1212, found 384.1210.

B3 was obtained according to the similar procedure, white solid, 45% yield (26.2 mg). The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis. m.p. 159–160 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.42 (t, *J* = 7.2 Hz, 1H), 7.24 (d, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 7.8 Hz, 2H), 7.01 (td, *J* = 7.2, 0.6 Hz, 1H), 6.93 (d, *J* = 6.6 Hz, 1H), 6.91 – 6.87 (m, 1H), 6.35

(d, J = 7.8 Hz, 1H), 6.27 (s, 1H), 5.68 – 5.62 (m, 1H), 5.28 (dd, J = 17.4, 0.6 Hz, 1H), 5.15 (d, J = 10.2 Hz, 1H), 4.39 (dd, J = 16.2, 4.8 Hz, 1H), 3.76 (dd, J = 16.2, 5.4 Hz, 1H), 2.55 (s, 3H), 2.13 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 193.0, 191.1, 176.8, 170.0, 142.2, 133.4, 130.8, 129.0, 128.4, 127.5, 124.7, 122.8, 118.0, 108.7, 89.1, 61.9, 42.9, 29.0, 15.9; ESI HRMS: calcd. For C₂₄H₂₁NO₄Na⁺ 410.1368, found 410.1370.

B5 was obtained according to the similar procedure. White solid, 11% yield (6.4 mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 159–160 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.72 (d, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 4.2 Hz, 1H), 7.19 (d, *J* = 4.8 Hz, 4H), 7.10

(td, J = 7.8, 1.2 Hz, 1H), 7.04 (td, J = 7.8, 1.2 Hz, 1H), 6.93 (dd, J = 7.2, 1.2 Hz, 1H), 6.27 (s, 1H), 2.64 (s, 3H), 2.57 (s, 3H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.7, 178.6, 170.1, 169.4, 139.3, 134.9, 134.0, 129.5, 128.5, 127.1, 125.1, 124.0, 120.4, 116.0, 89.8, 62.7, 29.8, 28.8, 26.6, 15.7; ESI HRMS: calcd. For C₂₃H₁₉NO₅Na⁺ 412.1162, found 412.1160.

B6 was obtained according to the similar procedure White solid, 21% yield (14.1 mg). The diastereomeric ratio was determined to be 12:1 by crude ¹H-NMR analysis. m.p. 161–162 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 8.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6

Hz, 2H), 7.30 (dt, J = 7.2, 1.6 Hz, 1H), 7.09 – 7.02 (m, 2H), 4.28 (s, 1H), 2.36 (s, 3H), 2.27 (s, 3H), 1.65 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.6, 195.8, 191.6, 170.9, 148.4, 140.4, 136.3, 134.2, 128.8, 128.5, 125.9, 124.0, 119.7, 114.5, 85.2, 62.9, 44.4, 43.0, 29.8, 28.3, 28.0; ESI HRMS: calcd. For C₂₄H₂₅NO₆Na⁺ 470.1580, found 470.1581.

3. General procedure for the synthesis of spirooxindole compounds 6

To a solution of Boc-protected tetra-substituted oxindole olefines **2** (0.15 mmol) in CH₂Cl₂ (2.0 mL) was added sulfur ylides **4** (0.165 mmol) at 25 °C. The reaction mixture was stirred until the reaction completed (monitored by TLC). Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 8:1) to give the compounds **6** which were dried under vacuum and further analyzed by ¹H-NMR, ¹³C-HMR, HRMS, *etc*.

5a was obtained according to the similar procedure. white solid, 45% yield (23.4 mg). The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis. m.p. 165–166 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.37 (s, 1H), 7.89 (dd, *J* = 8.0, 0.8 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.48 – 7.39 (m,

2H), 7.22 (td, J = 7.6, 1.2 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 6.96 (td, J = 7.6, 1.2 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 4.26 (s, 1H), 2.36 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.0, 196.1, 192.0, 173.5, 141.2, 136.5, 134.1, 128.9, 128.7, 128.5, 126.7, 122.5, 121.1, 110.1, 62.5, 43.6, 42.9, 29.8, 28.4; ESI HRMS: calcd. For C₂₁H₁₇NO₄Na⁺ 370.1055, found 370.1056.

6a was obtained as white solid in 82% yield (55.0 mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (dd, J = 8.0, 0.8 Hz , 2H), 7.85 (d, J = 8.0 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.30 – 7.27 (m,

1H), 7.09 – 7.02 (m, 2H), 4.28 (s, 1H), 2.35 (s, 3H), 2.26 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.7, 195.9, 191.7, 170.9, 148.5, 140.5, 136.4, 134.2, 128.9, 128.6, 126.0, 124.1, 119.8, 114.6, 85.3, 63.0, 44.5, 43.1, 29.8, 28.4, 28.1; ESI HRMS: calcd. For C₂₆H₂₅NO₆Na⁺ 470.1580, found 470.1581.

6b was obtained as white solid, 74% yield (51.7 mg). The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis. m.p. 143–144 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ 7.88 (d, *J* = 7.8 Hz, 1H), 7.75 (td, *J* = 7.2, 1.8 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.32 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.21

(t, J = 7.2 Hz, 1H), 7.08 – 7.03 (m, 2H), 6.93 (dd, J = 7.8, 1.2 Hz, 1H), 4.17 (d, J = 3.0 Hz, 1H), 2.37 (s, 3H), 2.29 (s, 3H), 1.65 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 198.0, 195.9, 190.1 (d, $J_{CF} = 3.0$ Hz), 170.9, 161.9 (d, $J_{CF} = 255.0$ Hz), 148.7, 140.7, 135.8 (d, $J_{CF} = 9.0$ Hz), 130.7 (d, $J_{CF} = 1.5$ Hz), 128.9, 125.6, 124.8 (d, $J_{CF} = 4.5$ Hz), 124.0, 119.9, 117.0, 116.9, 114.7, 85.2, 63.2, 48.6 (d, $J_{CF} = 7.5$ Hz), 43.3 (d, $J_{CF} = 3.0$ Hz), 29.9, 28.6, 28.2; ESI HRMS: calcd. For $C_{26}H_{24}FNO_6Na^+$ 488.1485, found 488.1487.

6c was obtained as white solid, 70% yield (48.9mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 145–146 ^oC; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.96 – 7.93 (m, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.31 (dt, *J* = 9.0, 1.8 Hz, 1H), 7.12 – 7.09 (m, 2H), 7.07 (td, *J*

= 7.8, 1.2 Hz, 1H), 7.01 (dd, J = 7.8, 1.2 Hz, 1H), 4.22 (s, 1H), 2.35 (s, 3H), 2.26 (s, 3H), 1.65 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.7, 195.9, 190.1, 171.0, 166.4 (d, J_{CF} = 255.0 Hz), 148.6, 140.5, 132.9 (d, J_{CF} = 4.5 Hz), 131.4 (d, J_{CF} = 10.5 Hz), 129.1, 126.0, 124.2, 119.7, 116.2 (d, J_{CF} = 22.5 Hz), 114.7, 85.4, 63.1, 44.3, 43.1, 29.9, 28.5, 28.1; ESI HRMS: calcd. For C₂₆H₂₄FNO₆Na⁺ 488.1485, found 488.1487.

6d was obtained as yellow solid, 63% yield (48.8mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 144–145 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.01 (d, *J* = 2.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.75 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H),

7.33 (td, J = 8.8, 1.6 Hz, 1H), 7.08 (td, J = 8.0, 1.2 Hz, 1H), 6.98 (dd. J = 8.0, 1.2 Hz, 1H), 4.13 (s, 1H), 2.32 (s, 3H), 2.28 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.5, 195.6, 189.7, 170.7, 148.4, 140.5, 139.0, 135.9, 133.8, 131.0, 130.3, 129.2, 127.5, 125.8, 124.2, 119.4, 114.8, 85.4, 63.3, 43.8, 43.3, 29.8, 28.5, 28.1; ESI HRMS: calcd. For C₂₆H₂₃Cl₂NO₆Na⁺ 538.0800, found 538.0802.

6e was obtained as yellow solid, 75% yield (59.2mg). The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis. m.p. 147–148 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.07 (t, *J* =

7.8 Hz, 1H), 6.99 (d, J = 7.2 Hz, 1H), 4.20 (s, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 1.65 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.7, 195.8, 190.8, 170.9, 148.5, 140.5, 135.2, 132.3, 130.0, 129.1, 125.9, 124.2, 119.6, 114.8, 85.5, 63.1, 44.2, 43.1, 29.9, 28.5, 28.2; ESI HRMS: calcd. For C₂₆H₂₄BrNO₆Na⁺ 548.0685, found 548.0686.

6f was obtained as white solid, 80% yield (55.4mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 142–143 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.88 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.38 (td, J = 7.8, 1.2 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.22 (dd, J = 15.6, 9.0 Hz, 2H), 7.09 (dd, J = 6.0, 2.4 Hz, 2H), 4.12 (s, 1H), 2.42 (s, 3H),

2.36 (s, 3H), 2.25 (s, 3H), 1.64 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 195.9, 194.7, 170.9, 148.5, 140.5, 132.6, 132.1, 129.5, 128.9, 126.2, 126.1, 124.0, 119.8, 114.6, 85.3, 63.2, 47.3, 43.5, 29.8, 28.4, 28.1, 21.2; ESI HRMS: calcd. For C₂₇H₂₇NO₆Na⁺ 484.1736, found 484.1734.

6g was obtained as white solid, 81% yield (58.0mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 145–146 ^oC; ¹H NMR(400 MHz, CDCl₃) δ (ppm) 7.88 (d, J = 8.8 Hz, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.06 – 7.04 (m, 2H), 6.88 (d, J = 8.8

Hz, 2H), 4.25 (s, 1H), 3.83 (s, 3H), 2.36 (s, 3H), 2.25 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.9, 196.0, 189.7, 171.1, 164.5, 148.6, 140.4, 131.1, 129.5, 128.7, 126.1, 124.0, 120.0, 114.5, 114.1, 85.2, 62.8, 55.6, 44.6, 42.8, 29.9, 28.3, 28.1; ESI HRMS: calcd. For C₂₇H₂₇NO₇H⁺ 500.1685, found 500.1688.

6h was obtained as white solid, 68% yield (46.3mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 137–138 °C; ¹H NMR(600 MHz, CDCl₃) δ (ppm) 7.86 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 3.0 Hz, 1H), 7.69 (d, *J* = 4.8 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.14 – 7.10 (m, 3H), 4.15 (s,

1H), 2.35 (s, 3H), 2.25 (s, 3H), 1.64 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.5, 195.6, 183.9,

170.9, 148.6, 143.7, 140.6, 135.9, 134.1, 129.0, 128.9, 126.5, 124.2, 119.8, 114.7, 85.4, 62.9, 60.5, 45.0, 43.2, 29.8, 28.1; ESI HRMS: calcd. For C₂₄H₂₃NO₆SNa⁺ 476.1144, found 476.1145.

6i was obtained as white solid, 65% yield (48.5 mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 153–154 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.47 (s, 1H), 7.97 – 7.92 (m, 2H), 7.85 – 7.82 (m, 3H), 7.60 – 7.55 (m, 2H), 7.30 – 7.26 (m, 1H),

7.13 – 7.05 (m, 2H), 4.46 (s, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.8, 195.9, 191.4, 171.1, 148.5, 140.5, 135.9, 133.8, 132.3, 130.9, 129.9, 129.3, 128.9, 128.8, 127.8, 127.2, 126.2, 124.1, 123.5, 119.8, 114.6, 85.3, 63.1, 44.6, 43.3, 29.9, 28.4, 28.1; ESI HRMS: calcd. For C₃₀H₂₇NO₆Na⁺ 520.1736, found 520.1738.

6j was obtained as white solid, 79% yield (49.2mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 149–150 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.91 (d, *J* = 8.4 Hz, 1H), 7.36 (dt, *J* = 8.4, 2.4 Hz, 1H), 7.14 – 7.12 (m, 2H), 4.21 – 4.18 (m, 1H), 4.14 – 4.11 (m, 1H),

3.33 (s, 1H), 2.30 (s, 3H), 2.27 (s, 3H), 1.63 (s, 9H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.4, 195.5, 170.6, 166.0, 148.6, 140.8, 129.1, 125.9, 124.0, 119.9, 114.8, 85.3, 62.2, 62.1, 41.6, 40.5, 29.6, 28.6, 28.1, 14.13; ESI HRMS: calcd. For C₂₂H₂₅NO₇Na⁺ 438.1529, found 438.1531.

6k was obtained as white solid, 68% yield (47.5mg). The diastereomeric ratio was determined to be 13:1 by crude ¹H-NMR analysis. m.p. 172–173 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.92 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.84 (dd, *J* = 9.0, 4.8 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.46 (dd, *J* = 7.8, 1.8 Hz, 2H),

7.00 (td, J = 9.0, 3.0 Hz, 1H), 6.82 (dd, J = 9.6, 3.0 Hz, 1H), 4.30 (s, 1H), 2.35 (s, 3H), 2.26 (s, 3H), 1.64 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.4, 195.8, 191.5, 170.7, 159.3 (d, $J_{CF} = 240$ Hz), 148.5, 136.4 (d, $J_{CF} = 36$ Hz), 134.5, 129.1, 128.7, 121.7 (d, $J_{CF} = 10.5$ Hz), 115.7 (d, $J_{CF} = 9.0$ Hz), 115.6, 114.1, 113.9, 85.6, 63.2, 44.7, 43.0, 29.8, 28.4, 28.1; ESI HRMS: calcd. For C₂₆H₂₄FNO₆Na⁺ 488.1485, found 488.1483.

61 was obtained as white solid, 70% yield (48.9mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 157–158 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.90 (d, *J* = 7.2 Hz, 2H), 7.60 – 7.58 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.07 – 7.01 (m, 2H), 6.84 (dd, *J* = 7.8,

1.2 Hz, 1H), 4.30 (s, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 1.61 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.2, 195.8, 191.5, 170.4, 148.4 (d, $J_{CF} = 247.5$ Hz), 147.0, 136.3, 134.5, 129.1, 128.7, 127.6 (d, $J_{CF} = 10.5$ Hz), 124.9 (d, $J_{CF} = 7.5$ Hz), 122.9 (d, $J_{CF} = 3.0$ Hz), 122.1 (d, $J_{CF} = 3.0$ Hz), 117.1 (d, $J_{CF} = 21.0$ Hz), 86.0, 63.2, 44.5, 43.0, 29.9, 28.4, 27.7; ESI HRMS: calcd. For C₂₆H₂₄FNO₆Na⁺ 488.1485, found 488.1483.

6m was obtained as yellow solid, 72% yield (41.9mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 136–137 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, *J* = 7.6 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.29 (d,

J = 1.2 Hz, 1H), 7.05 (s, 1H), 4.29 (s, 1H), 2.34 (s, 3H), 2.26 (s, 3H), 1.64 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.2, 195.2, 191.3, 170.3, 148.3, 138.9, 136.2, 134.4, 129.7, 128.9, 128.8, 128.6, 126.2, 121.5, 115.6, 85.6, 63.1, 44.6, 42.7, 29.6, 28.3, 28.0; ESI HRMS: calcd. For C₂₆H₂₄ClNO₆Na⁺ 504.1190, found 504.1189.

6n was obtained as yellow solid, 79% yield (57.1mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 145–146 ^oC; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, *J* = 2.0 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.05 (dd,

J = 8.4, 1.6 Hz, 1H, 6.96 (d, J = 8.8 Hz, 1H, 4.28 (s, 1H), 2.34 (s, 3H), 2.25 (s, 3H), 1.64 (s, 9H);¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.3, 195.8, 191.6, 170.5, 148.3, 141.3, 136.3, 135.0, 134.4, 129.0, 128.6, 127.0, 124.2, 118.2, 115.4, 85.8, 62.9, 44.6, 42.8, 29.8, 28.3, 28.0; ESI HRMS: calcd. For C₂₆H₂₄ClNO₆Na⁺ 504.1190, found 504.1191.

60 was obtained as yellow solid, 80% yield (63.2mg). The diastereomeric ratio was determined to be 15:1 by crude ¹H-NMR analysis. m.p. 142–143 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.93 (d, *J* = 7.2 Hz, 2H), 7.76 (d, *J* = 9.0 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.446 (t, *J* = 7.8 Hz, 2H), 7.43

(dd, J = 9.0, 1.8 Hz, 1H), 7.19 (d, J = 1.8 Hz, 1H), 4.28 (s, 1H), 2.34 (s, 3H), 2.26 (s, 3H), 1.63 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 197.2, 195.5, 191.3, 170.1, 148.2, 139.4, 136.2, 134.4, 131.8, 129.0, 128.9, 128.6, 121.8, 117.3, 115.9, 85.6, 63.2, 44.6, 42.6, 29.6, 28.3, 27.9; ESI HRMS: calcd. For C₂₆H₂₄BrNO₆Na⁺ 548.0685, found 548.0687.

6p was obtained as yellow solid, 81% yield (63.9mg). The diastereomeric ratio was determined to be 9:1 by crude ¹H-NMR analysis. m.p. 149–150 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, *J* = 0.8 Hz, 1H), 7.90 (d, *J* = 4.8 Hz, 2H), 7.61 – 7.58 (m, 1H), 7.45 (t, *J* = 5.2 Hz, 2H), 7.20 (dd, *J*

= 5.6, 0.8 Hz, 1H), 6.90 (d, J = 5.6 Hz, 1H), 4.29 (s, 1H), 2.34 (s, 3H), 2.25 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.3, 195.9, 191.6, 170.5, 148.3, 141.4, 136.3, 134.5, 129.1, 128.7, 127.3, 127.2, 123.1, 118.8, 118.3, 85.9, 63.0, 44.6, 29.9, 28.4, 28.1, 28.0; ESI HRMS: calcd. For C₂₆H₂₄BrNO₆Na⁺ 548.0685, found 548.0683.

6q was obtained as white solid, 85% yield (58.8mg). The diastereomeric ratio was determined to be 15:1 by crude ¹H-NMR analysis. m.p. 168–169 °C; ¹H NMR(400 MHz, CDCl₃) δ (ppm) 7.90 (d, *J* = 7.2 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.10 (dd, *J* =

8.4, 0.8 Hz, 1H), 6.84 (s, 1H), 4.25 (s, 1H), 2.35 (s, 3H), 2.29 (s, 3H), 2.26 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.8, 195.9, 191.7, 171.1, 148.6, 138.2, 136.5, 134.2, 133.7, 129.5, 128.9, 128.6, 126.5, 119.7, 114.4, 85.1, 63.0, 44.5, 43.2, 29.8, 28.4, 28.1, 21.0; ESI HRMS: calcd. For C₂₇H₂₇NO₆Na⁺ 484.1736, found 484.1740.

6r was obtained as white solid, 90% yield (64.5mg). The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis. m.p. 147–148 ^oC; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.10 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.47 (dt, *J* = 7.2, 1.2 Hz, 2H), 7.34

- 7.31 (m, 1H), 7.08 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.01 (dd, *J* = 7.8, 1.2 Hz, 1H), 4.43 - 4.39 (m, 1H),

4.32 - 4.29 (m, 1H), 4.10 (s, 1H), 2.29 (s, 3H), 1.65 (s, 9H), 1.35 (t, J = 7.2 Hz, 3H); 13 C NMR (150 MHz, CDCl₃) δ (ppm) 195.3, 191.0, 170.8, 165.5, 148.7, 140.7, 136.6, 133.9, 129.1, 128.9, 128.5, 125.7, 124.1, 119.7, 114.8, 85.0, 63.2, 56.7, 42.1, 42.0, 29.7, 28.2, 14.1; ESI HRMS: calcd. For C₂₇H₂₇NO₇Na⁺ 500.1685, found 500.1687.

4. General procedure for the synthesis of spirooxindole compounds 10

To a solution of Bn-protected tetra-substituted oxindole olefines **3** (0.15 mmol) in CH₂Cl₂ (2.0 mL) was added sulfur ylides **4** (0.165 mmol) at 50 °C. The reaction mixture was stirred until the reaction completed (monitored by TLC). Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give the compounds **10** which were dried under vacuum and further analyzed by ¹H-NMR, ¹³C-HMR, HRMS, *etc.*

8a was obtained according to the similar procedure. white solid, 48% yield (25.0 mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 164–165 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.84 (s, 1H), 7.43 – 7.38 (m, 1H), 7.35 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.22 (td, *J* = 7.6,

1.6 Hz, 2H), 6.99 - 6.95 (m, 1H), 6.91 - 6.86 (m, 2H), 6.40 (d, J = 7.6 Hz, 1H), 6.27 (s, 1H), 2.55 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.8, 191.3, 178.8, 170.2, 139.9, 134.8, 133.6, 129.0, 128.4, 127.5, 127.4, 124.9, 122.8, 118.3, 109.3, 88.8, 62.2, 28.9, 15.8; ESI HRMS: calcd. For C₂₁H₁₇NO₄Na⁺ 370.1055, found 370.1054.

10a was obtained as white solid in 74% yield (48.6 mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 168–169 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (t, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 4.4 Hz, 4H), 7.25 (d, *J* = 4.8 Hz, 3H), 7.16 (t, *J* = 7.6 Hz, 2H), 6.93 – 6.89

(m, 2H), 6.86 (t, J = 7.2 Hz, 1H), 6.30 (s, 1H), 6.17 (d, J = 7.6 Hz, 1H), 5.08 (d, J = 15.6 Hz, 1H),

4.20 (d, J = 16.0 Hz, 1H), 2.56 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.9, 191.0, 177.3, 169.9, 142.2, 135.3, 135.0, 133.4, 128.9, 128.7, 128.3, 127.5, 127.3, 126.9, 124.7, 122.8, 118.4, 108.8, 89.0, 62.0, 44.6, 29.0, 15.9; ESI HRMS: calcd. For C₂₈H₂₃NO₄Na⁺ 460.1525, found 460.1526.

10b was obtained as white solid, 66% yield (45.1 mg). The diastereomeric ratio was determined to be 16:1 by crude ¹H-NMR analysis. m.p. 154-155 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.35 – 7.31 (m, 4H), 7.31 – 7.24 (m, 3H), 6.95 (tt, J = 7.2, 1.8 Hz, 2H), 6.90 (t, J = 6.6 Hz, 2H), 6.86 (t, J =

7.8 Hz, 1H), 6.83 – 6.79 (m, 1H), 6.26 (s, 1H), 5.02 (d, *J* = 15.6 Hz, 1H), 4.33 (d, *J* = 15.6 Hz, 1H), 2.55 (s, 3H), 2.13 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.3 (d, J_{CF} = 4.5 Hz), 191.0, 177.1, 169.9, 160.4 (d, $J_{CF} = 253.5$ Hz), 142.8, 135.5, 134.7 (d, $J_{CF} = 9.0$ Hz), 130.3 (d, $J_{CF} = 3.0$ Hz), 129.0, 128.8, 127.6, 127.5, 127.1, 124.6, 124.3 (d, J_{CF} = 3.0 Hz), 122.8, 115.9, 115.8, 108.9, 90.9 (d, J_{CF} = 4.5 Hz), 61.6, 44.6, 29.1, 15.9; ESI HRMS: calcd. For $C_{28}H_{22}FNO_4Na^+$ 478.1431, found 478.1430.

10c was obtained as white solid, 68% yield (46.5mg). The diastereomeric ratio was determined to be 16:1 by crude ¹H-NMR analysis. m.p. 151–152 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.33 - 7.32 (m, 4H), 7.31 – 7.28 (m, 3H), 6.94 (td, J = 7.8, 1.2 Hz, 1H), 6.91 (dd, J = 7.2, 1.2 Hz, 1H), 6.86 (td, J = 7.2, 0.6 Hz, 1H), 6.81 - 6.76 (m, 2H), 6.28 (d, J = 7.8 Hz, 1H), 6.25 (s, 1H), 5.04 (d, J = 7.8 Hz, 1H), 6.81 - 6.76 (m, 2H), 6.81 - 6.76 (m, 2H), 6.81 - 6.78 Hz, 1H)

15.6 Hz, 1H), 4.38 (d, J = 15.6 Hz, 1H), 2.56 (s, 3H), 2.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.4, 191.0, 177.3, 169.9, 165.8 (d, $J_{CF} = 255.0$ Hz), 142.3, 135.3, 131.4 (d, $J_{CF} = 3.0$ Hz), 130.2 (d, $J_{CF} = 9.0$ Hz), 129.1, 128.9, 127.7, 127.5, 126.9, 124.8, 122.9, 118.6, 115.6 (d, $J_{CF} = 22.5$ Hz), 108.9, 88.7, 62.1, 44.7, 29.1, 15.9; ESI HRMS: calcd. For C₂₈H₂₂FNO₄Na⁺ 478.1431, found 478.1429.

10d was obtained as yellow solid, 71% yield (53.9 mg). The diastereomeric ratio was determined to be 8:1 by crude ¹H-NMR analysis. m.p. 196–197 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.37 – 7.34 (m, 3H), 7.33 (d, J = 1.8 Hz, 2H), 7.28 (dt, J = 6.0, 1.2 Hz, 1H), 7.12 (d, J =

8.4 Hz, 1H), 7.08 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.98 (dt, *J* = 9.0, 4.8 Hz, 1H), 6.88 (d, *J* = 4.2 Hz, 2H),

6.31 (d, J = 7.8 Hz, 1H), 6.18 (s, 1H), 5.12 (d, J = 15.6 Hz, 1H), 4.36 (d, J = 15.6 Hz, 1H), 2.55 (s, 3H), 2.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.0, 190.9, 177.1, 169.7, 142.3, 138.2, 135.2, 134.4, 133.3, 130.4, 129.5, 129.3, 128.9, 127.8, 127.5, 126.7, 126.3, 124.7, 123.0, 118.5, 109.0, 88.8, 62.0, 44.8, 29.1, 15.9; ESI HRMS: calcd. For C₂₈H₂₁Cl₂NO₄Na⁺ 528.0745, found 528.0748.

10e was obtained as white solid, 75% yield (58.1mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 152–153 ^oC; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.35 – 7.31 (m, 4H), 7.25 (t, *J* = 4.0 Hz, 3H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.96 (td, *J* = 7.6, 2.0Hz, 1H), 6.90

(dd, *J* = 7.2, 1.6 Hz, 1H), 6.86 (t, *J* = 7.6 Hz, 1H), 6.30 (d, *J* = 8.0 Hz, 1H), 6.23 (s, 1H), 5.00 (d, *J* = 15.6 Hz, 1H), 4.41 (d, *J* = 15.6 Hz, 1H), 2.55 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.9, 190.9, 177.2, 169.7, 142.3, 135.2, 133.6, 131.6, 129.1, 128.9, 128.8, 128.7, 127.7, 127.5, 127.4, 126.8, 124.7, 122.8, 118.5, 108.9, 88.7, 61.9, 44.8, 29.0, 15.8; ESI HRMS: calcd. For $C_{28}H_{22}BrNO_4Na^+$ 538.0630, found 538.0632.

10f was obtained as white solid, 78% yield (52.8mg). The diastereomeric ratio was determined to be 20:1 by crude ¹H-NMR analysis. m.p. 178–179 ^oC; ¹H NMR (600 MHz,) δ (ppm) 7.31 (td, *J* = 7.8, 1.2 Hz, 1H), 7.28 – 7.26 (m, 3H), 7.22 (t, *J* = 6.0 Hz, 3H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.01 (dd, *J* = 7.2,

1.2 Hz, 1H), 6.97 (td, J = 7.2, 2.4 Hz, 2H), 6.89 (td, J = 7.8, 0.6 Hz, 1H), 6.30 (s, 1H), 6.20 (d, J = 7.8 Hz, 1H), 4.97 (d, J = 16.2 Hz, 1H), 4.02 (d, J = 16.2 Hz, 1H), 2.56 (s, 3H), 2.13 (s, 3H), 1.81 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 194.3, 190.9, 176.9, 169.6, 142.3, 140.1, 140.0, 135.2, 133.9, 132.3, 131.7, 129.1, 128.7, 128.5, 127.4, 127.0, 125.1, 124.5, 122.8, 118.9, 109.1, 89.4, 61.8, 44.5, 28.9, 20.0, 15.8; ESI HRMS: calcd. For C₂₉H₂₅NO₄Na⁺ 474.1681, found 474.1683.

10g was obtained as white solid, 81% yield (56.8mg). The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis. m.p. 188–189 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.33 (t, *J* = 3.0 Hz, 1H), 7.31 (t, *J* = 1.8 Hz, 1H), 7.29 – 7.28 (m, 4H), 7.26 – 7.24 (m, 1H), 6.94 (d, *J* =

7.2 Hz, 1H), 6.92 (dd, J = 7.2, 1.2 Hz, 1H), 6.85 (td, J = 7.2, 0.6 Hz, 1H), 6.63 (dt, J = 9.6, 3.0 Hz, 2H), 6.26 (d, J = 7.2 Hz, 2H), 5.03 (d, J = 15.6 Hz, 1H), 4.46 (d, J = 16.2 Hz, 1H), 3.78 (s, 3H),

2.55 (s, 3H), 2.15 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.1, 191.0, 177.5, 170.1, 163.9, 142.3, 135.5, 130.0, 128.9, 128.8, 128.0, 127.5, 127.4, 127.0, 124.9, 122.8, 118.6, 113.7, 108.8, 88.5, 62.2, 55.6, 44.7, 29.1, 16.0; ESI HRMS: calcd. For C₂₉H₂₅NO₅Na⁺ 490.1630, found 490.1631.

10h was obtained as white solid, 60% yield (39.9 mg). The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis. m.p. 172–173 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.51 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.36 (dd, *J* = 4.2, 1.2 Hz, 3H), 7.34 – 7.31 (m, 2H), 7.28 (dd, *J* = 6.6, 1.2 Hz, 1H), 6.98

(td, J = 7.8, 1.2 Hz, 1H), 6.95 (dd, J = 7.2, 0.6 Hz, 1H), 6.88 (dd, J = 7.2, 0.6 Hz, 1H), 6.83 – 6.82 (m, 1H), 6.40 (d, J = 7.8 Hz, 1H), 6.08 (s, 1H), 5.06 (d, J = 15.6 Hz, 1H), 4.64 (d, J = 15.6 Hz, 1H), 2.56 (s, 3H), 2.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.2, 184.9, 177.5, 169.9, 142.4, 140.9, 135.5, 135.4, 132.2, 129.1, 128.9, 128.8, 127.9, 127.7, 127.5, 124.8, 123.0, 118.6, 108.9, 89.2, 62.6, 44.7, 29.1, 15.9; ESI HRMS: calcd. For C₂₆H₂₁NO₄SNa⁺ 466.1089, found 466.1090.

10i was obtained as white solid, 62% yield (45.3 mg). The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis. m.p. 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 – 7.86 (m, 2H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.53 (m, 3H), 7.27 (d, *J* =

7.2 Hz, 2H), 7.09 – 7.08 (m, 4H), 6.97 (d, J = 7.2 Hz, 1H), 6.87 – 6.83 (m, 2H), 6.48 (s, 1H), 5.95 (d, J = 7.2 Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 3.76 (d, J = 16.0 Hz, 1H), 2.59 (s, 3H), 2.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.7, 190.9, 177.3, 169.9, 142.0, 135.4, 134.9, 132.3, 131.8, 129.5, 129.1, 128.9, 128.8, 128.5, 128.3, 127.7, 127.3, 127.0, 126.9, 124.7, 123.0, 122.7, 118.4, 108.8, 89.0, 62.1, 44.4, 29.7, 29.0, 15.9; ESI HRMS: calcd. For C₃₂H₂₅NO₄Na⁺ 510.1681, found 510.1682.

10j was obtained as white solid, 74% yield (41.7 mg). The diastereomeric ratio was determined to be 6:1 by crude ¹H-NMR analysis. m.p. 145–146 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.48 (d, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.8 Hz, 3H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.15 (dt, *J* = 3.0, 1.2 Hz, 1H), 6.93 (d, *J* =

2.4 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 5.38 (s, 1H), 5.10 (d, *J* = 16.2 Hz, 1H), 4.99 (d, *J* = 15.6 Hz, 1H), 2.50 (s, 3H), 2.12 (s, 3H), 1.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 201.4, 191.1, 176.9, 169.3, 142.6, 135.5, 129.4, 128.8, 127.7, 127.4, 123.5, 122.9, 109.6, 91.7, 61.2, 44.7, 28.9,

27.3, 15.7; ESI HRMS: calcd. For C₂₃H₂₁NO₄Na⁺ 398.1368, found 398.1368.

HRMS: calcd. For C₂₄H₂₃NO₅Na⁺ 428.1474, found 428.1476.

101 was obtained as white solid, 70% yield (47.8mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 158–159 ^oC; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.46 (tt, *J* = 7.8, 1.2 Hz, 1H), 7.33 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.31 – 7.28 (m, 4H), 7.20 (td, *J* = 7.8, 1.8 Hz, 2H),

6.69 (dd, J = 7.8, 2.4 Hz, 1H), 6.60 (td, J = 8.4, 2.4 Hz, 1H), 6.31 (s, 1H), 6.07 (dd, J = 8.4, 4.2 Hz, 1H), 5.30 (s, 1H), 5.10 (d, J = 16.2 Hz, 1H), 4.18 (d, J = 16.2 Hz, 1H), 2.57 (s, 3H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.6, 190.9, 177.2, 159.2(d, $J_{CF} = 241.5$ Hz), 138.3, 135.0, 134.9, 128.9, 128.5, 127.7, 127.6, 127.2, 118.6, 115.3 (d, $J_{CF} = 24.0$ Hz), 112.7 (d, $J_{CF} = 24.0$ Hz), 109.4 (d, $J_{CF} = 9.0$ Hz), 88.8, 62.4, 44.8, 29.1, 15.9; ESI HRMS: calcd. For C₂₈H₂₂FNO₄Na⁺ 478.1431, found 478.1429.

10m was obtained as white solid, 56% yield (38.2mg). The diastereomeric ratio was determined to be 16:1 by crude ¹H-NMR analysis. m.p. 160–161 ^oC; ¹H NMR (600 MHz,CDCl₃) δ (ppm) 7.43 (tt, *J* = 7.8, 1.2 Hz, 1H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.32 (td, *J* = 7.2, 1.8 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.23

(dd, J = 8.4, 1.2 Hz, 2H), 7.12 (t, J = 7.2 Hz, 2H), 6.82 – 6.79 (m, 1H), 6.72 – 6.68 (m, 2H), 6.27 (s, 1H), 5.09 (d, J = 15.6 Hz, 1H), 4.48 (d, J = 15.0 Hz, 1H), 2.56 (s, 3H), 2.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.7, 191.0, 177.1, 170.1, 146.9 (d, $J_{CF} = 244.9$ Hz), 136.6, 134.8, 133.8, 128.6, 128.4, 127.6 (d, $J_{CF} = 2.0$ Hz), 127.4, 123.5, 123.4, 120.7, 120.6, 118.6, 117.2, 117.0, 89.0, 62.2, 46.1, 29.1, 15.9; ESI HRMS: calcd. For C₂₈H₂₂FNO₄Na⁺ 478.1431, found 478.1432.

10n was obtained as white solid, 66% yield (46.7mg). The diastereomeric ratio was determined to be 5:1 by crude ¹H-NMR analysis. m.p. 159–160 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.46 (t, *J* = 7.8 Hz, 1H), 7.31 (dd, *J* = 7.8, 1.2 Hz, 3H), 7.28 (d, *J* = 5.4 Hz, 3H), 7.24 (dd, J = 6.6, 5.4 Hz,

1H), 7.21 (t, J = 7.8 Hz, 2H), 6.91 (d, J = 1.8 Hz, 1H), 6.87 (dd, J = 8.4, 2.4 Hz, 1H), 6.29 (s, 1H), 6.06 (d, J = 8.4 Hz, 1H), 5.08 (d, J = 16.2 Hz, 1H), 4.18 (d, J = 16.2 Hz, 1H), 2.57 (s, 3H), 2.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.7, 191.0, 177.1, 170.1, 147.7, 146.1, 136.6, 134.8, 133.8, 128.6, 128.4, 127.7, 127.6, 127.5, 127.4, 123.5, 123.4, 120.6, 118.6, 117.2, 117.0, 89.0, 62.2, 46.1, 29.0, 15.9; ESI HRMS: calcd. For C₂₈H₂₂ClNO₄Na⁺ 494.1135, found 494.1133.

100 was obtained as yellow solid, 67% yield (47.4 mg). The diastereomeric ratio was determined to be 15:1 by crude ¹H-NMR analysis. m.p. 164–165 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.47 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.33 – 7.31 (m, 2H), 7.31 – 7.28 (m, 5H), 7.21 (td, *J* = 8.4,

1.8 Hz, 2H), 6.84 (d, J = 1.8 Hz, 2H), 6.28 (s, 1H), 6.16 (s, 1H), 5.05 (d, J = 15.6 Hz, 1H), 4.18 (d, J = 16.2 Hz, 1H), 2.56 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 190.9, 177.4, 170.0, 143.5, 134.9, 134.7, 133.8, 129.0, 128.5, 128.9, 127.8, 127.5, 125.6, 125.5, 122.7, 118.6, 109.4, 88.8, 61.8, 44.7, 29.1, 15.9; ESI HRMS: calcd. For C₂₈H₂₂ClNO₄Na⁺ 494.1135, found 494.1136.

10p was obtained as white solid, 70% yield (54.2 mg). The diastereomeric ratio was determined to be 13:1 by crude ¹H-NMR analysis. m.p. 200–201 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.46 (td, *J* = 7.2, 0.6 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 3H), 7.29 – 7.27 (m, 4H), 7.21 (t, *J* = 7.2 Hz, 2H), 7.04

(d, J = 1.8 Hz, 1H), 7.02 (dt, J = 8.4, 2.4 Hz, 1H), 6.29 (s, 1H), 6.02 (dd, J = 7.8, 0.6 Hz, 1H), 5.08 (d, J = 15.6 Hz, 1H), 4.18 (d, J = 16.2 Hz, 1H), 2.57 (s, 3H), 2.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.6, 190.9, 176.9, 170.1, 141.4, 135.0, 134.8, 133.7, 131.8, 128.2, 128.9, 128.5, 127.7, 127.6, 127.2, 118.6, 115.4, 110.3, 88.8, 62.0, 44.7, 29.1, 16.0; ESI HRMS: calcd. For C₂₈H₂₂BrNO₄Na⁺ 538.0630, found 538.0632.

10q was obtained as yellow solid, 69% yield (54.5 mg). The diastereomeric ratio was determined to be 10:1 by crude ¹H-NMR analysis. m.p. 184–185 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.47 (tt, *J* = 7.8, 1.2 Hz, 1H), 7.32 – 7.31 (m, 2H), 7.30 – 7.26 (m, 5H), 7.21 (td, *J* = 7.2,

1.2 Hz, 2H), 7.00 (dd, J = 7.8, 1.8 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.31 (d, J = 1.8 Hz, 1H), 6.28 (s, 1H), 5.05 (d, J = 15.6 Hz, 1H), 4.18 (d, J = 16.2 Hz, 1H), 2.55 (s, 3H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.7, 190.9, 177.3, 170.0, 143.6, 134.8, 134.7, 133.8, 128.9, 128.5, 127.8, 127.5, 127.2, 126.1, 125.9, 125.7, 122.6, 118.5, 112.1, 88.7, 61.8, 44.7, 29.1, 15.9; ESI HRMS: calcd. For C₂₈H₂₂BrNO₄Na⁺ 538.0630, found 538.0633.

10r was obtained as white solid, 80% yield (54.1 mg). The diastereomeric ratio was determined to be 18:1 by crude ¹H-NMR analysis. m.p. 162–163 ^oC; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (t, *J* = 7.2 Hz, 1H), 7.25 (d, *J* = 4.4 Hz, 4H), 7.25 (d, *J* = 7.2 Hz, 3H), 7.16 (t, *J* = 7.6 Hz, 2H), 6.74 (s,

1H), 6.70 (d, J = 8.0 Hz, 1H), 6.29 (s, 1H), 6.05 (d, J = 8.0 Hz, 1H), 5.06 (d, J = 16.0 Hz, 1H), 4.16 (d, J = 16.0 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.0, 191.1, 177.1, 169.9, 139.8, 135.4, 135.1, 133.3, 132.3, 129.2, 128.7, 128.5, 128.4, 128.3, 127.5, 127.4, 127.3, 126.9, 125.4, 118.4, 108.5, 89.1, 62.0, 44.6, 29.0, 20.9, 15.9; ESI HRMS: calcd. For C₂₉H₂₅NO₄Na⁺ 474.1681, found 474.1683.

5. Crystal data of 6r and 10a

COCH₃

=0

Boc

Identification code	ljl-kjw-2-230k
Empirical formula	C ₂₇ H ₂₇ NO ₇
Formula weight	477.49
Temperature/K	230
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	21.1261(6)
b/Å	24.8124(6)
c/Å	9.1976(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4821.3(2)
Z	8
$\rho_{calc}g/cm^3$	1.316
µ/mm ⁻¹	0.788
F(000)	2016.0
Crystal size/mm ³	$0.65 \times 0.5 \times 0.25$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	10.258 to 145.272
Index ranges	$\text{-}25 \leq h \leq 19, \text{-}30 \leq k \leq 26, \text{-}5 \leq l \leq 11$
Reflections collected	14596
Independent reflections	6174 [$R_{int} = 0.0336$, $R_{sigma} = 0.0337$]
Data/restraints/parameters	6174/1/641
Goodness-of-fit on F ²	1.069
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0568, wR_2 = 0.1589$
Final R indexes [all data]	$R_1 = 0.0612, wR_2 = 0.1641$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.32
Flack parameter	0.29(17)

Identification code	ljl-kjw-1-230k
Empirical formula	C ₂₈ H ₂₃ NO ₄
Formula weight	437.47
Temperature/K	230
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.0593(3)
b/Å	14.8180(5)
c/Å	14.6664(6)
a/°	90
β/°	97.286(3)
$\gamma/^{\circ}$	90
Volume/Å ³	2168.50(14)
Z	4
$\rho_{calc}g/cm^3$	1.340
µ/mm ⁻¹	0.723
F(000)	920.0
Crystal size/mm ³	$0.6 \times 0.5 \times 0.4$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	10.094 to 144.7
Index ranges	$-10 \le h \le 12, -17 \le k \le 17, -18 \le l \le 16$
Reflections collected	11047
Independent reflections	4203 [$R_{int} = 0.0224, R_{sigma} = 0.0215$]
Data/restraints/parameters	4203/0/300
Goodness-of-fit on F ²	1.064
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0544, wR_2 = 0.1494$
Final R indexes [all data]	$R_1 = 0.0585, wR_2 = 0.1536$
Largest diff. peak/hole / e Å-3	0.23/-0.37

6. NMR spectra and HPLC chromatograms

0.000

 ^{13}C NMR spectrum of 6a in CDCl_3

¹H NMR spectrum of **6b** in CDCl₃ (d.r. = 18:1)

¹³C NMR spectrum of **6b** in CDCl₃

 ^{19}F NMR spectrum of **6b** in CDCl₃

¹³C NMR spectrum of **6c** in CDCl₃

 ^{19}F NMR spectrum of 6c in CDCl_3

¹H NMR spectrum of **6i** in CDCl₃ (d.r. = 10:1)

¹³C NMR spectrum of **6i** in CDCl₃

¹³C NMR spectrum of **6k** in CDCl₃

¹³C NMR spectrum of **6l** in CDCl₃

¹³C NMR spectrum of **6m** in CDCl₃

 ^{13}C NMR spectrum of 6n in CDCl_3

¹⁹F NMR spectrum of **10b** in CDCl₃

¹H NMR spectrum of **10c** in CDCl₃ (d.r. = 16:1)

¹³C NMR spectrum of **10c** in CDCl₃

¹H NMR spectrum of **10d** in CDCl₃ (d.r. = 8:1)

¹³C NMR spectrum of **10d** in CDCl₃

¹H NMR spectrum of **10e** in CDCl₃ (d.r. = 10:1)

¹H NMR spectrum of **10i** in CDCl₃ (d.r. = 5:1)

¹³C NMR spectrum of **10i** in CDCl₃

).

¹³C NMR spectrum of **10j** in CDCl₃

¹H NMR spectrum of 10k in CDCl₃ (d.r. = 5:1)

¹³C NMR spectrum of **10l** in CDCl₃

¹H NMR spectrum of **10m** in CDCl₃ (d.r. = 16:1)

130 120 110 100 90 80 70 60 f1 (ppm)

¹³C NMR spectrum of **10n** in CDCl₃

140

160 150

50 40

20

10

0 -10

30

10 200

190 180 170

-0.005 -0.004 -0.003 -0.002 -0.001 -0.000

¹H NMR spectrum of 10p in CDCl₃ (d.r. = 13:1)

¹³C NMR spectrum of **10r** in CDCl₃

HPLC Spectrum

Peak Analysis Report

Detector A Channel 2 254nm					
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)	
1	5.585	64711	821155	50.472	
2	7.710	21661	805795	49.528	
Total		86372	1626950	100.000	

Peak Analysis Report

Detector A Channel 2 254nm				
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	5.577	315843	4097696	69.888
2	7.577	58781	1765578	30.112
Total		374624	5863274	100.000

Peak Analysis Report

Detector A Channel 2 254nm					
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)	
1	7.768	100795	3948609	57.677	
2	11.179	33268	2897464	42.323	
Total		134063	6846072	100.000	

Peak Analysis Report

Detector A Channel 2 254nm					
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)	
1	7.876	102751	4190718	65.916	
2	11.435	27532	2166958	34.084	
Total		130283	6357676	100.000	

