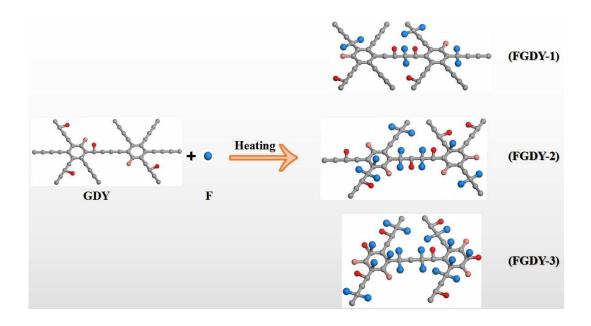
Supplementary Information

Fluorinated graphdiyne as a significantly enhanced fluorescence material

Wenqing Xiao,^{a,b,c} Huifang Kang,^{a,b,c} Yuda Lin,^{a,b,c} Mingxing Liang,^{a,b,c} Jiaxin Li,^{a,b,c} Feng Huang,^{a,b,c} Qian Feng,^{a,b,c*} Yongping Zheng,^{a,b,c*} and Zhigao Huang ^{a,b,c}

^a College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China.


^b Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China

^c Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou,350117,China

*Corresponding author:

Telephone/Fax: 86-591-22867577.

E-mail: fengqian@finu.edu.cn, zyp@finu.edu.cn

Figure S1. Schematic illustrations of F doping in GDY, in which gray balls represent C atom, blue balls represents F atoms, red balls represent O atoms in C-O bonds and pink balls represent O atoms in C=O bonds.

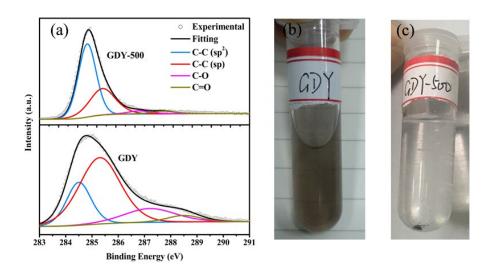
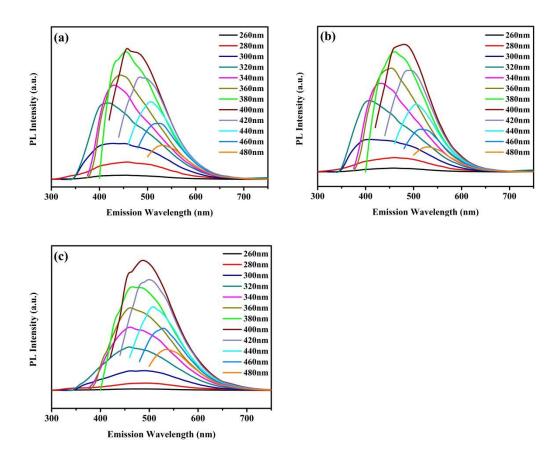



Figure S2. (a) The high resolution XPS spectra of C1s of the prepared GDY and the

annealed sample GDY-500, which is reduced at 500 °C. It is seen that the prepared GDY contains hydrophilic oxygen-containing functional groups (C-O and C=O), and the GDY sample is greatly reduced when it is annealed at 500 °C. (b) & (c) are the photos of the dispersions of GDY and GDY-500, respectively. It is clearly seen that the prepared GDY has good solubility in ethanol. For comparision, GDY-500 was dispersed in ethanol with the same experimental condition, and it is found that the annealed graphdiyne with little oxygen-containing functional groups is difficult to dissolve in ethanol.

Figure S3. The PL spectra at different excitation wavelengths from 260 to 480 nm of (a) GDY, (b) FGDY-1, (c) FGDY-3.

Figure S4. Fourier infrared spectrum of FGDY-2 at alkaline conditions.