Supporting information

Characterization of glycan isomers using magnetic carbon

nanoparticles as a MALDI co-matrix

Alireza Banazadeh¹, Reed Nieman¹, Mona Goli¹, Wenjing Peng¹, Ahmed Hussein^{1,2}, Ercan Bursal³, Hans Lischka^{1,4}, Yehia Mechref^{1,5}

¹Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409.

²Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt.

³Department of Nursing, School of Health, Mus Alparslan University, Mus, Turkey.

⁴School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072, P.R. China.

⁵Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409.

Table of Contents

Table 1S. Structures of standard N-glycans that were used in this study.

Table 2S. Calculated relative intensity ratios for the five selected fragment ions originated by each pair of the isomer.

Table 3S. Calculated bond dissociation energies for $\alpha 2,3$ - and $\alpha 2,6$ -linked sialic acid isomers

Figure 1S. MALDI-TOF-MS spectra of (A) $N_4H_4F_1$, (B) $F_1N_4H_4$, using 10µgDHB. Symbols: \blacksquare , N-acetylglucosamine; \bigcirc , Galactose; \blacktriangledown , Fucose; \bigcirc , Mannose; \diamondsuit , N-acetylneuraminic acid.

Figure 2S. MALDI-TOF-MS spectra of (A) $N_4H_4F_1S_1$, (B) $F_1N_4H_4S_1$ using 10μ gDHB+0.1 μ gMCNPs. (C) Comparison of the relative intensities of fragmented ions derived from $N_4H_4F_1S_1$ and $F_1N_4H_4S_1$. † shows the fucosylated fragment ions; ‡ shows the diagnostic ions. Symbols as in Figure 1S.

Figure 3S. (A) Extracted ion chromatogram of the glycan $N_4H_5S_1$, released from human blood serum. MALDI-TOF-MS spectra of the peak at (B) 46.3 min and (C) 51.8 min. Symbols as in Figure 1S.

Glycan	Structure
$N_4H_4F_1$	
$F_1N_4H_4$	
$N_4H_4F_1S_1$	
$F_1N_4H_4S_1$	
$N_4H_4F_1S_1(2,3)$	
$N_4H_4F_1S_1(2,6)$	

Table 1S. Structures of standard N-glycans that were used in this study.

Note: Nomenclature of glycans: N: N-acetylhexosamine, H: hexose, F: fucose, and S: sialic acid; numbers denote the number of relative sugars. When F is before N, it is core fucosylation; when F is after N, it is branch fucosylation. 2,3 and 2,6 represent sialic acid linkage.

Table 2S. Calculated relative intensity ratios for the five selected fragment ions originated by each pair of the isomer.

m/z	Relative intensity ratio	S.D. (n=9)	
$N_4H_4F_1/F_1N_4H_4$			
1647.4	0.592	0.082	
1546.3	1.624	0.134	
1340.3	0.379	0.043	
1280.3	0.538	0.071	
915.2	1.423	0.115	
$N_4H_4F_1S_1/F_1N_4H_4S_1$			
1035.2	2.135	0.097	
1136.2	0.656	0.075	
1178.2	0.438	0.036	
1280.2	0.523	0.022	
1339.3	0.371	0.031	
N ₄ H ₅ S ₁ (2,3)/N ₄ H ₅ S ₁ (2,6)			
1136.2	1.291	0.045	
1442.2	1.545	0.067	
1501.2	1.800	0.105	
1663.3	0.546	0.018	
1976.3	0.320	0.037	

Table 3S. Calculated bond dissociation energies for $\alpha 2,3$ - and $\alpha 2,6$ -linked sialic acid isomers

Bond dissociation energy	α2,3-linkage sialic acid	α 2,6-linkage sialic acid
$(\Delta E, \text{kcal/mol})$		
$\Delta E(1)$	129.43	138.91
$\Delta E(2)$	109.00	119.82

