Supporting Information

Using molecular dynamics simulations to evaluate active designs of cephradine hydrolase by molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods

Jing Xue¹, Xiaoqiang Huang¹, Yushan Zhu^{1,2,*}

¹Department of Chemical Engineering, Tsinghua University, Beijing 100084, China ²MOE Key Lab for Industrial Biocatalysis, Tsinghua University, Beijing 100084, China

*Corresponding author. E-mail: yszhu@tsinghua.edu.cn.

Site pair	Туре	Atom1	Atom2 ^a	Atom3 ^a	Atom4 ^a	Min ^b	Max ^b
Ser117-TS	Distance	OG	#C15			1.4	1.6
	Angle	CB	OG	#C15		100.0	120.0
	Angle	OG	#C15	#O16		100.0	120.0
	Torsion	OG	#O16	#C15	#N14	100.0	140.0
Tyr118- TS	Distance	Ν	#O16			2.6	3.0
	Angle	Ν	HN	#O16		140.0	180.0
	Angle	HN	#O16	#C15		80.0	140.0
Tyr44- TS	Distance	OH	#O16			2.6	3.0
	Angle	OH	HH	#O16		140.0	180.0
	Angle	HH	#O16	#C15		80.0	140.0
His287-Ser117	Distance	NE2	#OG			2.6	3.0
	Angle	NE2	#HG1	#OG		140.0	180.0
	Angle	CE1	NE2	#HG1		90.0	150.0
Asp259-His287	Distance	OD1	#ND1			2.6	3.0
	Angle	CG	OD1	#HD1		90.0	150.0
	Angle	OD1	#HD1	#ND1		140.0	180.0
Asp259-His287	Distance	OD2	#ND1			2.6	3.0
	Angle	CG	OD2	#HD2		90.0	150.0
	Angle	OD2	#HD2	#ND1		140.0	180.0
Phe261-Asp259	Distance	Ν	#OD2			2.6	3.2
	Angle	HN	#OD2	#CG		90.0	150.0
	Angle	Ν	HN	#OD2		140.0	180.0
Phe261-Asp259	Distance	Ν	#OD1			2.6	3.2
	Angle	HN	#OD1	#CG		90.0	150.0
	Angle	Ν	HN	#OD1		140.0	180.0

Table S1 Catalytic geometrical constraints for TS

^aAtoms on the latter residue within a site pair are prefixed with '#'

^bDistance measurements are given in Å. Angle and torsion measurements are given in degrees

Туре	Atom1 ^a	Atom2 ^a	Atom3 ^a	Atom4	Min ^b	Max ^b	Step ^b
Distance	#OG	C15			1.4	1.6	0.1
Angle	#CB	#OG	C15		105.0	115.0	5.0
Torsion	#CA	#CB	#OG	C15	-180.0	179.0	10.0
Angle	#OG	C15	O16		105.0	115.0	5.0
Torsion	#OG	O16	C15	N14	120.0	120.0	0.0
Torsion	#OG	O16	C15	C17	-120.0	-120.0	0.0
Torsion	#CB	#OG	C15	O16	-180.0	179.0	10.0
Torsion	N14	C15	C17	C18	-180.0	179.0	10.0
Torsion	C15	C17	C18	C19	-180.0	179.0	10.0
Torsion	O16	C15	N14	C7	-180.0	179.0	10.0
Torsion	C15	N14	C7	C8	-180.0	179.0	10.0

 Table S2 Variation rules for generating TS library

^aAtoms on anchor residue Ser117 are prefixed with '#'

^bDistance measurements are given in Å. Angle and torsion measurements are given in degrees.

Site pair	Туре	Atom1	Atom2 ^a	Atom3 ^a	Atom4 ^a	Min ^b	Max ^b
Ser117-ES	Distance	OG	#C15			2.9	3.1
Tyr118- ES	Distance	Ν	#O16			2.6	3.0
	Angle	Ν	HN	#O16		140.0	180.0
	Angle	HN	#O16	#C15		80.0	140.0
Tyr44- ES	Distance	OH	#O16			2.6	3.0
	Angle	OH	HH	#O16		140.0	180.0
	Angle	HH	#O16	#C15		80.0	140.0
His287-Ser117	Distance	NE2	#OG			2.6	3.0
	Angle	NE2	#HG1	#OG		140.0	180.0
	Angle	CE1	NE2	#HG1		90.0	150.0
Asp259-His287	Distance	OD1	#ND1			2.6	3.0
	Angle	CG	OD1	#HD1		90.0	150.0
	Angle	OD1	#HD1	#ND1		140.0	180.0
Asp259-His287	Distance	OD2	#ND1			2.6	3.0
	Angle	CG	OD2	#HD2		90.0	150.0
	Angle	OD2	#HD2	#ND1		140.0	180.0
Phe261-Asp259	Distance	Ν	#OD2			2.6	3.2
	Angle	HN	#OD2	#CG		90.0	150.0
	Angle	Ν	HN	#OD2		140.0	180.0
Phe261-Asp259	Distance	Ν	#OD1			2.6	3.2
	Angle	HN	#OD1	#CG		90.0	150.0
	Angle	Ν	HN	#OD1		140.0	180.0

Table S3 Catalytic geometrical constraints for ES

^aAtoms on the latter residue within a site pair are prefixed with '#'

^bDistance measurements are given in Å. Angle and torsion measurements are given in degrees

Туре	Atom1 ^a	Atom2 ^a	Atom3 ^a	Atom4	Min ^b	Max ^b	Step ^b
Distance	#OG	C15			2.9	3.1	0.1
Angle	#CB	#OG	C15		0.0	180.0	10.0
Torsion	#CA	#CB	#OG	C15	-180.0	179.0	10.0
Angle	#OG	C15	O16		0.0	180.0	10.0
Torsion	#OG	O16	C15	N14	0.0	180.0	10.0
Torsion	#CB	#OG	C15	O16	-180.0	179.0	10.0
Torsion	N14	C15	C17	C18	-180.0	179.0	10.0
Torsion	C15	C17	C18	C19	-180.0	179.0	10.0
Torsion	O16	C15	N14	C7	-180.0	179.0	10.0
Torsion	C15	N14	C7	C8	-180.0	179.0	10.0

 Table S4 Variation rules for generating ES library

^aAtoms on anchor residue Ser117 are prefixed with '#'

^bDistance measurements are given in Å. Angle and torsion measurements are given in degrees.

Kinetic parameters	Methods	ε _p	R ²	t values	Critical t value (p=0.05)	Results
	MM/GBSA	1	0.7053	4.892		passed
$V \wedge C$	MM/PBSA	1	0.7531	5.523		passed
$K_{\rm m} \sim \Delta G_{\rm bind}$	MM/PBSA	4	0.7728	5.831		passed
	MM/PBSA	24	0.6784	4.593		passed
	MM/GBSA	1	0.1095	1.109		failed
$I_{\rm L} / V \wedge C^{\dagger}$	MM/PBSA	1	0.1609	1.385	2 2 2 2	failed
$\kappa_{cat}/\Lambda_{m}\sim\Delta G^{*}$	MM/PBSA	4	0.5001	3.163	2.228	passed
	MM/PBSA	24	0.5005	3.166		passed
	MM/GBSA	1	0.2509	1.830		failed
$L \Lambda C^{\dagger}$	MM/PBSA	1	0.0914	1.003		failed
$\kappa_{\rm cat} \sim \Delta G^*_{\rm cat}$	MM/PBSA	4	0.2426	1.789		failed
	MM/PBSA	24	0.4724	2.992		passed

Table S5 Results of t-test for fit between the experimental kinetic parameters and the calculated free energy changes.

Figure S1 The regression between the experimental turnover numbers and the predicted activation energies of WT and its eleven variants by MM/GBSA and MM/PBSA methods. The ordinate is scaled logarithmically, and the hypothetical coordination systems are shown in dashed lines with the WT as the origin. (A) MM/GBSA method; (B) MM/PBSA method based on ε_p =1; (C) MM/PBSA method based on ε_p =4; (D) MM/PBSA method based on ε_p =24.

Figure S1(B) 0.01 MM/PBSA $\varepsilon_p=1$ R²=0.0914 ▲ Q5 ▲ Q1 ▲ Q4 0.001 kcat (s⁻¹) ▲ Q6 08 ▲ Q10 ▲ Q9 0.0001 ▲ Q11 ▲ Q7 ▲ Q2 0.00001 -100 -50 0 50 100 150 200 ΔG^{\neq}_{cat} (kcal/mol)

Figure S1(C)

Figure S1(D)

Figure S2 System volume change for the wild type during 20 ns MD simulations.

